Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38787381

RESUMO

Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [(TC), n=13 (5F/8M), 28±1 yrs] or 160 IU of intranasal insulin administered over five min [n=15 (5F/10M), 26±2 yrs]; five (1F/4M) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, 15, and 30 minutes following insulin administration. Leg vascular conductance (LVC = [LBF ÷ mean BP] x 100) was calculated. Venous insulin and glucose concentrations remained unchanged throughout (p>0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15: 121±8%; minute 30: 118±6%; p=0.009, n=7) and mean BP (baseline = 100%; minute 15: 103±1%; minute 30: 102±1%; p=0.003) increased, while LVC decreased (baseline = 100%; minute 15: 93±3%; minute 30: 99±3%; p=0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (p>0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.

2.
J Neurophysiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629146

RESUMO

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) reflects postganglionic sympathetic axonal activity directed toward the skeletal muscle vasculature. Recordings are typically evaluated for spontaneous bursts of MSNA; however, the filtering and integration of raw neurograms to obtain multi-unit bursts conceals the underlying c-fiber discharge behavior. The continuous wavelet transform with matched mother wavelet has permitted the assessment of action potential discharge patterns, but this approach uses a mother wavelet optimized for an amplifier that is no longer commercially available (University of Iowa Bioengineering Nerve Traffic Analysis System; Iowa NTA). The aim of this project was to determine the morphology and action potential detection performance of mother wavelets created from the commercially available, NeuroAmp (ADinstruments), from distinct laboratories, compared with a mother wavelet generated from the Iowa NTA. Four optimized mother wavelets were generated in a 2-phase iterative process from independent datasets, collected by separate laboratories (one Iowa NTA, three NeuroAmp). Action potential extraction performance of each mother wavelet was compared for each of the NeuroAmp-based datasets. The total number of detected action potentials was not significantly different across wavelets. However, the predictive value of action potential detection was reduced when the Iowa NTA wavelet was used to detect action potentials in NeuroAmp data, but not different across NeuroAmp wavelets. To standardize approaches, we recommend a NeuroAmp-optimized mother wavelet be used for the evaluation of sympathetic action potential discharge behavior when microneurographic data are collected with this system.

3.
Exp Physiol ; 108(12): 1481-1489, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37878751

RESUMO

The present study evaluated cardiovagal baroreflex sensitivity (BRS) across the menstrual/pill cycle in naturally menstruating women (NAT women) and women using oral hormonal contraceptives (OCP women). In 21 NAT women (23 ± 4 years old) and 22 OCP women (23 ± 3 years old), cardiovagal BRS and circulating concentrations of estradiol and progesterone were evaluated during the lower hormone (early follicular/placebo pill) and higher hormone (late follicular to early luteal/active pill) phases. During the lower hormone phase, cardiovagal BRS up, down and mean gain were lower in NAT women (15.6 ± 8.3, 15.2 ± 6.1 and 15.1 ± 7.1 ms/mmHg) compared with OCP women (24.7 ± 9.4, 22.9 ± 8.0 and 23.0 ± 8.0 ms/mmHg) (P = 0.003, P = 0.002 and P = 0.003, respectively), and higher oestrogen (R2  = 0.15, P = 0.024), but not progesterone (R2  = 0.06, P = 0.18), concentrations were predictive of lower BRS mean gain. During the higher hormone phase, higher progesterone concentrations were predictive of lower BRS mean gain (R2  = 0.12, P = 0.024). A multivariate regression model revealed group (NAT or OCP) to be a significant predictor of cardiovagal BRS mean gain in the lower hormone phase when hormone concentrations were adjusted for (R2  = 0.36, P = 0.0044). The multivariate regression model was not significant during the higher hormone phase (P > 0.05). In summary, cardiovagal BRS is lower in NAT compared with OCP women during the lower hormone phase of the menstrual/pill cycle and might be associated with higher oestrogen concentrations. In contrast, during the higher hormone phase of the menstrual/OCP cycle, higher progesterone concentrations were predictive of lower cardiovagal BRS. NEW FINDINGS: What is the central question of this study? Does cardiovagal baroreflex sensitivity (BRS) differ between naturally menstruating women (NAT women) and women using oral contraceptives (OCP women)? What is the main finding and its importance? The main findings are as follows: (1) NAT women exhibit lower cardiovagal BRS than OCP women during the lower hormone phase of the menstrual or pill cycle; and (2) circulating oestrogen concentrations are significant predictors of cardiovagal BRS during the lower hormone phase, with higher oestrogen concentrations predicting lower BRS. The present data advance our understanding of the effect of endogenous ovarian hormones and OCP use on cardiovascular control mechanisms.


Assuntos
Menstruação , Progesterona , Humanos , Feminino , Adulto Jovem , Adulto , Barorreflexo , Estradiol , Anticoncepcionais Orais , Estrogênios
4.
J Appl Physiol (1985) ; 135(2): 352-361, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410902

RESUMO

Acute exposure to hypoxia promotes both an increase in sympathetic nervous system activity (SNA) and local vasodilation. In rodents, intermittent hypoxia (IH)-mediated increases in SNA are associated with an increase in blood pressure in males but not females; notably, the protective effect of female sex is lost following ovariectomy. These data suggest the vascular response to hypoxia and/or SNA following IH may be sex- and/or hormone specific-although mechanisms are unclear. We hypothesized that hypoxia-mediated vasodilation and SNA-mediated vasoconstriction would be unchanged following acute IH in male adults. We further hypothesized that hypoxic vasodilation would be augmented and SNA-mediated vasoconstriction would be attenuated in female adults following acute IH, with the greatest effect when endogenous estradiol was high. Twelve male (25 ± 1 yr) and 10 female (25 ± 1 yr) participants underwent 30 min of IH. Females were studied in a low (early follicular) and high (late follicular) estradiol state. Preceding and following IH, participants completed two trials [steady-state hypoxia and cold pressor test (CPT)], where forearm blood flow and blood pressure were measured and used to determine forearm vascular conductance (FVC). The FVC response to hypoxia (P = 0.67) and sympathetic activation (P = 0.73) were unchanged following IH in males. There was no effect of IH on hypoxic vasodilation in females, regardless of estradiol state (P = 0.75). In contrast, the vascular response to sympathetic activation was attenuated in females following IH (P = 0.02), independent of estradiol state (P = 0.65). Present data highlight sex-related differences in neurovascular responsiveness following acute IH.NEW & NOTEWORTHY We examined the effects of acute intermittent hypoxia (AIH) on the vascular response to sympathetic activation and acute hypoxia. Present findings show, despite no effect of AIH on the vascular response to hypoxia, the forearm vasoconstrictor response to acute sympathetic activation is attenuated in females following AIH, independent of estradiol state. These data provide mechanistic understanding of potential benefits of AIH, as well as the impact of biological sex.


Assuntos
Antebraço , Hipóxia , Masculino , Feminino , Humanos , Hemodinâmica , Pressão Sanguínea , Vasodilatação/fisiologia , Sistema Nervoso Simpático/fisiologia
5.
Exp Physiol ; 108(5): 692-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951536

RESUMO

NEW FINDINGS: What is the central question of this study? We sought to establish between-day reproducibility in estimates of middle cerebral artery blood velocity (MCAv) and cerebrovascular reactivity (CVR) in young, healthy male and female adults in tightly controlled experimental conditions. What is the main finding and its importance? Measures of MCAv assessed during morning, afternoon and evening hours are reproducible between days. There is diurnal variation in CVR, with values being highest during the evening compared with the morning. Greater diurnal variation in CVR is associated with more efficient sleep and greater nocturnal blood pressure dipping. These data enhance our understanding of modulators of MCAv and CVR. ABSTRACT: Transcranial Doppler (TCD) is used to assess cerebral blood velocity (CBV) and cerebrovascular reactivity (CVR). Assessments of TCD reproducibility are limited, and few include multiple within-day measurements. We sought to establish reproducibility of CBV and CVR in healthy adults during three time periods (morning, afternoon and evening). We hypothesized that CBV and CVR measured at the same time of day are reproducible between days. We also hypothesized that CBV and CVR exhibit diurnal variation, with measurements being higher in the evening compared with morning/afternoon hours. Twelve adults [six male and six female, 27 years (95% CI, 22-31 years)] completed three measurements (morning, afternoon and evening) on two separate days in controlled conditions (e.g., meals, activity and sleep). Middle cerebral artery blood velocity (MCAv, TCD) was measured continuously at rest and during two CVR tests (end-expiratory apnoea and carbogen inhalation). Intraclass correlation coefficients for resting MCAv showed moderate to good reproducibility, which did not differ between morning, afternoon and evening (0.87, 0.56 and 0.67, respectively; P > 0.05). Intraclass correlation coefficients for peak MCAv during apnoea (0.80, 0.46 and 0.65, respectively; P > 0.05) and minute 2 of carbogen inhalation (0.81, 0.74 and 0.73, respectively; P > 0.05) were also not different from morning compared with afternoon/evening. Time of day had no effect on resting MCAv (F = 0.69, P = 0.51, ƞp 2  = 0.06) or the peak response to apnoea (F = 1.00, P = 0.39, ƞp 2  = 0.08); however, peak MCAv during carbogen breathing exhibited diurnal variation, with highest values in the evening (F = 3.41, P = 0.05, ƞp 2  = 0.24). Measures of CBV and CVR assessed via TCD during morning, afternoon and evening hours are reproducible between days. There is diurnal variation in the MCAv response to carbogen exposure, with CVR being highest during evening compared with morning hours.


Assuntos
Apneia , Artéria Cerebral Média , Humanos , Adulto , Masculino , Feminino , Artéria Cerebral Média/fisiologia , Reprodutibilidade dos Testes , Dióxido de Carbono , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R536-R546, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802950

RESUMO

Insulin acts centrally to stimulate sympathetic vasoconstrictor outflow to skeletal muscle and peripherally to promote vasodilation. Given these divergent actions, the "net effect" of insulin on the transduction of muscle sympathetic nerve activity (MSNA) into vasoconstriction and thus, blood pressure (BP) remains unclear. We hypothesized that sympathetic transduction to BP would be attenuated during hyperinsulinemia compared with baseline. In 22 young healthy adults, MSNA (microneurography), and beat-to-beat BP (Finometer or arterial catheter) were continuously recorded, and signal-averaging was performed to quantify the mean arterial pressure (MAP) and total vascular conductance (TVC; Modelflow) responses following spontaneous bursts of MSNA at baseline and during a euglycemic-hyperinsulinemic clamp. Hyperinsulinemia significantly increased MSNA burst frequency and mean burst amplitude (baseline: 46 ± 6 au; insulin: 65 ± 16 au, P < 0.001) but did not alter MAP. The peak MAP (baseline: 3.2 ± 1.5 mmHg; insulin: 3.0 ± 1.9 mmHg, P = 0.67) and nadir TVC (P = 0.45) responses following all MSNA bursts were not different between conditions indicating preserved sympathetic transduction. However, when MSNA bursts were segregated into quartiles based on their amplitudes at baseline and compared with similar amplitude bursts during hyperinsulinemia, the peak MAP and TVC responses were blunted (e.g., largest burst quartile: MAP, baseline: Δ4.4 ± 1.7 mmHg; hyperinsulinemia: Δ3.0 ± 0.8 mmHg, P = 0.02). Notably, ∼15% of bursts during hyperinsulinemia exceeded the size of any burst at baseline, yet the MAP/TVC responses to these larger bursts (MAP, Δ4.9 ± 1.4 mmHg) did not differ from the largest baseline bursts (P = 0.47). These findings indicate that increases in MSNA burst amplitude contribute to the overall maintenance of sympathetic transduction during hyperinsulinemia.


Assuntos
Pressão Arterial , Hiperinsulinismo , Humanos , Adulto , Pressão Sanguínea/fisiologia , Vasoconstritores , Insulina , Músculo Esquelético/inervação , Sistema Nervoso Simpático , Frequência Cardíaca/fisiologia
7.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622084

RESUMO

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Feminino , Masculino , Camundongos , Animais , Resistência à Insulina/fisiologia , Insulina , Obesidade , Redução de Peso , Artéria Femoral , Dieta
8.
Physiol Rep ; 10(18): e15445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117415

RESUMO

Women with uterine fibroids (UF), benign tumors of the myometrium, have a higher prevalence of hypertension than women without UF. The cause for this relationship is unclear. Muscle sympathetic nerve activity (MSNA) is a regulator of arterial blood pressure, and it is possible that variations in MSNA predispose women with UF to develop hypertension. The purpose of this study was to assess baseline blood pressure and MSNA and the relationships between MSNA and systemic hemodynamics in women with and without UF. We measured blood pressure (brachial intra-arterial line), MSNA (microneurography), and systemic hemodynamics (total peripheral resistance and cardiac output) at rest in 14 healthy, normotensive, premenopausal women with UF (42 ± 2 years old) and 9 healthy, normotensive, premenopausal women without UF (41 ± 2 years old). Baseline blood pressure and MSNA did not differ between groups (p > 0.05 for both). In women with UF, there was a positive correlation between MSNA and total peripheral resistance (r = 0.75, p = 0.02), as well as a negative correlation between MSNA and cardiac output (r = -0.73, p = 0.03). In contrast, these relationships were not seen in women without UF (p > 0.05 for both relationships). These data suggest that autonomic interactions with systemic hemodynamics, and thus blood pressure regulation, are different in healthy women with UF compared to healthy women without UF.


Assuntos
Hipertensão , Leiomioma , Adulto , Feminino , Hemodinâmica/fisiologia , Humanos , Músculos , Sistema Nervoso Simpático/fisiologia
9.
J Appl Physiol (1985) ; 133(4): 867-875, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952348

RESUMO

Repeat exposures to low oxygen (intermittent hypoxia, IH), like that observed in sleep apnea, elicit increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in men. Endothelin (ET) receptor antagonists can attenuate the sympathetic and BP response to IH in rodents; whether these data translate to humans are unclear. We hypothesized that ET-receptor antagonism would ameliorate any rise in MSNA and BP following acute IH in humans. Twelve healthy men (31 ± 1 yr) completed two visits (control, bosentan) separated by at least 1 wk. MSNA, BP, and baroreflex sensitivity (modified Oxford) were assessed during normoxic rest before and following 30 min of IH. The midpoint (T50) for each individual's baroreflex curve was calculated. Acute IH increased plasma ET-1 (P < 0.01), MSNA burst frequency (P = 0.03), and mean BP (P < 0.01). There was no effect of IH on baroreflex sensitivity (P = 0.46), although an increase in T50 was observed (P < 0.01). MSNA burst frequency was higher (P = 0.04) and mean BP (P < 0.01) was lower following bosentan treatment compared with control. There was no effect of bosentan on baroreflex sensitivity (P = 0.53), although a lower T50 was observed on the bosentan visit (P < 0.01). There was no effect of bosentan on increases in MSNA (P = 0.81) or mean BP (P = 0.12) following acute IH. Acute IH results in an increase in ET-1, MSNA, and BP in healthy young men. The effect of IH on MSNA and BP is not attenuated following ET-receptor inhibition. Present data suggest that acute IH does not increase MSNA or BP through activation of ET-receptors in healthy young men.NEW & NOTEWORTHY Repeat exposures to low oxygen (intermittent hypoxia, IH) elicit increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in men. Endothelin (ET) receptor antagonists can attenuate the sympathetic and BP response to IH in rodents; whether these data translate to humans were unclear. We show acute IH results in an increase in ET-1, MSNA, and BP in healthy young men; however, the effect of IH on MSNA and BP does not occur through activation of ET-receptors in healthy young men.


Assuntos
Barorreflexo , Sistema Nervoso Simpático , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Bosentana , Endotelina-1 , Endotelinas , Frequência Cardíaca/fisiologia , Hemodinâmica , Humanos , Hipóxia , Masculino , Músculo Esquelético , Oxigênio , Receptor de Endotelina A , Sistema Nervoso Simpático/fisiologia
10.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R351-R362, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816718

RESUMO

We examined the effect of intermittent hypoxia (IH, a hallmark feature of sleep apnea) on adipose tissue lipolysis and the role of endothelin-1 (ET-1) in this response. We hypothesized that IH can increase ET-1 secretion and plasma free fatty acid (FFA) concentrations. We further hypothesized that inhibition of ET-1 receptor activation with bosentan could prevent any IH-mediated increase in FFA. To test this hypothesis, 16 healthy male participants (32 ± 5 yr, 26 ± 2 kg/m2) were exposed to 30 min of IH in the absence (control) and presence of bosentan (62.5 mg oral twice daily for 3 days prior). Arterial blood samples for ET-1, epinephrine, and FFA concentrations, as well as abdominal subcutaneous adipose tissue biopsies (to assess transcription of cellular receptors/proteins involved in lipolysis), were collected. Additional proof-of-concept studies were conducted in vitro using primary differentiated human white preadipocytes (HWPs). We show that IH increased circulating ET-1, epinephrine, and FFA (P < 0.05). Bosentan treatment reduced plasma epinephrine concentrations and blunted IH-mediated increases in FFA (P < 0.01). In adipose tissue, bosentan had no effect on cellular receptors and proteins involved in lipolysis (P > 0.05). ET-1 treatment did not directly induce lipolysis in differentiated HWP. In conclusion, IH increases plasma ET-1 and FFA concentrations. Inhibition of ET-1 receptors with bosentan attenuates the FFA increase in response to IH. Based on a lack of a direct effect of ET-1 in HWP, we speculate the effect of bosentan on circulating FFA in vivo may be secondary to its ability to reduce sympathoadrenal tone.


Assuntos
Bosentana , Endotelina-1 , Hipóxia , Adipócitos , Adulto , Bosentana/farmacologia , Células Cultivadas , Endotelina-1/metabolismo , Epinefrina , Humanos , Lipólise , Masculino
12.
Am J Physiol Heart Circ Physiol ; 322(6): H1072-H1079, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486478

RESUMO

Acute increases in sympathetic nervous system activity (SNA) often elicit peripheral vasoconstriction and increases in blood pressure (BP). Given sympathetic support of BP is modulated by ovarian sex hormones (e.g., estradiol), we sought to examine the effect of menstrual cycle and oral hormonal contraceptive pill (OC) phase on the hemodynamic response to acute increases in SNA. We hypothesized sympathoexcitation via cold pressor test (CPT) would elicit greater peripheral vasoconstriction and increases BP in females with natural menstrual cycles (NC) compared with females taking OC. We further hypothesized that SNA-mediated vasoconstriction would be attenuated during the high estradiol (HE) phase versus the low estradiol (LE) phase of the menstrual/pill cycle. Female NC (n = 11, 25 ± 1 yr) and OC (n = 10, 24 ± 1 yr) participants were studied during the LE (early follicular, placebo pill) and HE (late follicular, active pill) phase of the menstrual/pill cycle. BP (finger photoplethysmography), heart rate (HR, ECG), and forearm blood flow (FBF, venous occlusion plethysmography) were measured during a 5-min baseline and a 2-min CPT. CPT elicited an increase in BP in both groups (time, P < 0.01). During CPT, OC participants exhibited greater and sustained increases in HR compared with NC participants (group × time, P < 0.01). Higher HRs were met with increases in FBF in OC participants during the CPT, which was not observed in NC participants (group × time, P < 0.01). OC participants exhibit greater increases in HR, and paradoxical vasodilation during acute sympathetic activation compared with NC participants. Group differences are unaffected by menstrual/pill phase.NEW & NOTEWORTHY Acute increases in sympathetic nervous system activity often elicit peripheral vasoconstriction and increases in blood pressure (BP). Given sympathetic support of BP is modulated by ovarian sex hormones (e.g., estradiol), we sought to examine the effect of menstrual cycle and oral hormonal contraceptive pill (OC) phase on the hemodynamic response to acute increases in sympathetic nervous system activity via the cold pressor test. We show OC participants exhibit paradoxical vasodilation during acute sympathetic activation compared with participants with natural menstrual cycles; notably, group differences were unaffected by menstrual/pill phase.


Assuntos
Anticoncepcionais , Hemodinâmica , Hipotensão , Sistema Nervoso Simpático , Pressão Sanguínea/fisiologia , Temperatura Baixa , Anticoncepcionais/farmacologia , Estradiol/farmacologia , Feminino , Humanos , Sistema Nervoso Simpático/fisiologia
13.
Curr Diab Rep ; 22(4): 169-175, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247145

RESUMO

PURPOSE OF REVIEW: Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS: Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented ß-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistência à Insulina , Adrenérgicos/farmacologia , Adulto , Pressão Sanguínea , Humanos , Insulina , Resistência à Insulina/fisiologia , Obesidade , Sistema Nervoso Simpático
14.
Am J Physiol Endocrinol Metab ; 322(4): E355-E365, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35187960

RESUMO

Muscle sympathetic nerve activity (MSNA) increases during hyperinsulinemia, primarily attributed to central nervous system effects. Whether peripheral vasodilation induced by insulin further contributes to increased MSNA via arterial baroreflex-mediated mechanisms requires further investigation. Accordingly, we examined baroreflex modulation of the MSNA response to hyperinsulinemia. We hypothesized that rescuing peripheral resistance with coinfusion of the vasoconstrictor phenylephrine would attenuate the MSNA response to hyperinsulinemia. We further hypothesized that the insulin-mediated increase in MSNA would be recapitulated with another vasodilator (sodium nitroprusside, SNP). In 33 young healthy adults (28 M/5F), MSNA (microneurography) and arterial blood pressure (BP, Finometer/brachial catheter) were measured, and total peripheral resistance (TPR, ModelFlow) and baroreflex sensitivity were calculated at rest and during intravenous infusion of insulin (n = 20) or SNP (n = 13). A subset of participants receiving insulin (n = 7) was coinfused with phenylephrine. Insulin infusion decreased TPR (P = 0.01) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity or BP (P > 0.05). Coinfusion with phenylephrine returned TPR and MSNA to baseline, with no effect on arterial baroreflex sensitivity (P > 0.05). Similar to insulin, SNP decreased TPR (P < 0.02) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity (P > 0.12). Acute hyperinsulinemia shifts the baroreflex stimulus-response curve to higher MSNA without changing sensitivity, likely due to insulin's peripheral vasodilatory effects. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.NEW & NOTEWORTHY We hypothesized that elevation in muscle sympathetic nervous system activity (MSNA) during hyperinsulinemia is mediated by its peripheral vasodilator effect on the arterial baroreflex. Using three separate protocols in humans, we observed increases in both MSNA and cardiac output during hyperinsulinemia, which we attributed to the baroreflex response to peripheral vasodilation induced by insulin. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.


Assuntos
Barorreflexo , Hiperinsulinismo , Adulto , Pressão Sanguínea , Frequência Cardíaca , Humanos , Insulina/farmacologia , Músculo Esquelético , Fenilefrina/farmacologia , Sistema Nervoso Simpático , Vasodilatadores/farmacologia
15.
Am J Physiol Heart Circ Physiol ; 322(1): H25-H35, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738833

RESUMO

Central adiposity is associated with greater sympathetic support of blood pressure. ß-adrenergic receptors (ß-AR) buffer sympathetically mediated vasoconstriction and ß-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized ß-AR vasodilation would be lower in obese compared with normal weight adults. Because ß-AR vasodilation in normal weight adults is limited by cyclooxygenase (COX) restraint of nitric oxide synthase (NOS), we further explored the contributions of COX and NOS to ß-AR vasodilation in this cohort. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured and forearm vascular conductance (FVC) was calculated (FVC = FBF/MAP). The rise in FVC from baseline (ΔFVC) was quantified during graded brachial artery infusion of isoproterenol (Iso, 1-12 ng/100 g/min) in normal weight (n = 36) and adults with obesity (n = 22) (18-40 yr old). In a subset of participants, Iso-mediated vasodilation was examined before and during inhibition of NOS [NG-monomethyl-l-arginine (l-NMMA)], COX (ketorolac), and NOS + COX (l-NMMA + ketorolac). Iso-mediated increases in FVC did not differ between groups (P = 0.57). l-NMMA attenuated Iso-mediated ΔFVC in normal weight (P = 0.03) but not adults with obesity (P = 0.27). In normal weight adults, ketorolac increased Iso-mediated ΔFVC (P < 0.01) and this response was lost with concurrent l-NMMA (P = 0.67). In contrast, neither ketorolac (P = 0.81) nor ketorolac + l-NMMA (P = 0.40) altered Iso-mediated ΔFVC in adults with obesity. Despite shifts in COX and NOS, ß-AR vasodilation is preserved in young adults with obesity. These data highlight the presence of a compensatory shift in microvascular control mechanisms in younger humans with obesity.NEW & NOTEWORTHY We examined ß-adrenergic receptor-mediated vasodilation in skeletal muscle of humans with obesity and normal weight. Results show that despite shifts in the contribution of cyclooxygenase and nitric oxide synthase, ß-adrenergic-mediated vasodilation is relatively preserved in young, otherwise healthy adults with obesity. These data highlight the presence of subclinical changes in microvascular control mechanisms early in the obesity process and suggest duration of obesity and/or the addition of primary aging may be necessary for overt dysfunction.


Assuntos
Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Vasodilatação , Agonistas Adrenérgicos beta/farmacologia , Adulto , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Humanos , Isoproterenol/farmacologia , Cetorolaco/farmacologia , Masculino , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Obesidade/fisiopatologia , Receptores Adrenérgicos beta/metabolismo , ômega-N-Metilarginina/farmacologia
16.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R903-R911, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668438

RESUMO

Sex-related differences in respiratory modulation of sympathetic activity have been observed in rodent models of sleep apnea [intermittent hypoxia (IH)]. In light of sex disparities in the respiratory response to acute IH in humans as well as changes in respiratory modulation of muscle sympathetic nerve activity (MSNA) in clinical sleep apnea, we examined sex-related differences in respiratory modulation of MSNA following acute IH. We hypothesized that respiratory modulation of MSNA would be altered in both male and female participants after IH; however, the respiratory patterning of MSNA following IH would be sex specific. Heart rate, MSNA, and respiration were evaluated in healthy male (n = 21, 30 ± 5 yr) and female (n = 10, 28 ± 5 yr) participants during normoxic rest before and after 30 min of IH. Respiratory modulation of MSNA was assessed by fitting polynomials to cross-correlation histograms constructed between sympathetic spikes and respiration. MSNA was elevated after IH in male (20 ± 6 to 24 ± 8 bursts/min) and female (19 ± 8 to 22 ± 10 bursts/min) participants (P < 0.01). Both male and female participants exhibited respiratory modulation of MSNA (P < 0.01); however, the pattern differed by sex. After IH, modulation of MSNA within the breath was reduced in male participants (P = 0.03) but increased in female participants (P = 0.02). Both male and female adults exhibit changes in respiratory patterning of MSNA after acute IH; however, this pattern differs by sex. These data support sex disparities in respiratory modulation of MSNA and may have implications for conditions such as sleep apnea.


Assuntos
Hipóxia/fisiopatologia , Pulmão/inervação , Músculo Esquelético/inervação , Oxigênio/sangue , Mecânica Respiratória , Sistema Nervoso Simpático/fisiopatologia , Adaptação Fisiológica , Adulto , Biomarcadores/sangue , Feminino , Frequência Cardíaca , Humanos , Hipóxia/sangue , Masculino , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
17.
Exp Physiol ; 106(8): 1689-1698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34187092

RESUMO

NEW FINDINGS: What is the central question of this study? Sympathetically mediated vasoconstriction is preserved during hypoxaemia in humans, but our understanding of vascular control comes from predominantly male cohorts. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not? What is the main finding and its importance? Sympathetically mediated vasoconstriction is preserved or even enhanced during steady-state hypoxia in young men, and the peripheral vascular response to sympathetic activation during hypoxaemia is attenuated in young women. These data advance our understanding of sex-related differences in hypoxic vascular control. ABSTRACT: Activation of the sympathetic nervous system causes vasoconstriction and a reduction in peripheral blood flow. Sympathetically mediated vasoconstriction may be attenuated during systemic hypoxia to maintain oxygen delivery; however, in predominantly male participants sympathetically mediated vasoconstriction is preserved or even enhanced during hypoxaemia. Given the potential for sex-specific differences in hypoxic vascular control, prior results are limited in application. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not. Healthy young men (n = 13, 25 ± 4 years) and women (n = 11, 24 ± 4 years) completed two trials consisting of a 2-min cold pressor test (CPT, a well-established sympathoexcitatory stimulus) during baseline normoxia and steady-state hypoxaemia. Beat-to-beat blood pressure (finger photoplethysmography) and forearm blood flow (venous occlusion plethysmography) were measured continuously. Total and forearm vascular conductance (TVC and FVC, respectfully) were calculated. A change (Δ) in TVC and FVC from steady-state during the last 1 min of CPT was calculated and differences between normoxia and systemic hypoxia were assessed. In men, the reduction in TVC during CPT was greater during hypoxia compared to normoxia (ΔTVC, P = 0.02), whereas ΔTVC did not differ between conditions in women (P = 0.49). In men, ΔFVC did not differ between normoxia and hypoxia (P = 0.92). In women, the reduction in FVC during CPT was attenuated during hypoxia (ΔFVC, P < 0.01). We confirm sympathetically mediated vasoconstriction is preserved or enhanced during hypoxaemia in young men, whereas peripheral vascular responsiveness to sympathetic activation during hypoxaemia is attenuated in young women. The results advance our understanding of sex-related differences in hypoxic vascular control.


Assuntos
Hipóxia , Caracteres Sexuais , Pressão Sanguínea , Feminino , Antebraço/irrigação sanguínea , Humanos , Masculino , Fluxo Sanguíneo Regional/fisiologia , Sistema Nervoso Simpático/fisiologia , Vasoconstrição/fisiologia
18.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R771-R779, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33851554

RESUMO

Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following ß-adrenergic receptor blockade. In accordance, we also reveal that insulin augments ß-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of ß-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.


Assuntos
Adrenérgicos/farmacologia , Hiperinsulinismo/tratamento farmacológico , Sistema Nervoso Simpático/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Adulto , Pressão Sanguínea/efeitos dos fármacos , Feminino , Humanos , Masculino , Norepinefrina/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Sistema Nervoso Simpático/fisiologia , Resistência Vascular/efeitos dos fármacos
19.
Clin Auton Res ; 31(3): 365-368, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33740207

RESUMO

COVID-19 is a global pandemic that has had a devastating effect on the health and economy of much of human civilization. While the acute impacts of COVID-19 were the initial focus of concern, it is becoming clear that in the wake of COVID-19, many patients are developing chronic symptoms that have been called Long-COVID. Some of the symptoms and signs include those of postural tachycardia syndrome (POTS). Understanding and managing long-COVID POTS will require a significant infusion of health care resources and a significant additional research investment. In this document from the American Autonomic Society, we outline the scope of the problem, and the resources and research needed to properly address the impact of Long-COVID POTS.


Assuntos
COVID-19/complicações , Síndrome da Taquicardia Postural Ortostática/etiologia , Humanos , Síndrome da Taquicardia Postural Ortostática/terapia , Sociedades Médicas , Estados Unidos , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...