Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells Dev ; 176: 203881, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37914154

RESUMO

17ß-estradiol (E2) and canonical WNT-signaling represent crucial regulatory pathways for microtubule dynamics and synaptic formation. However, it is unclear yet whether E2-induced canonical WNT ligands have significant impact on neurogenic repair under inflammatory condition. In this study, first, we prepared the chronic activated-microglial-conditioned media, known to be comprised of neuro-inflammatory components. Long term exposure of microglial conditioned media to SH-SY5Y cells showed a negative impact on differentiation markers, microtubule associated protein-2 (MAP2) and synaptophysin (SYP), which was successfully rescued by pre and co-treatment of 10 nM 17ß-estradiol. The inhibition of estrogen receptors, ERα and ERß significantly blocked the E2-mediated recovery in the expression of differentiation marker, SYP. Furthermore, the inflammatory inhibition of canonical signaling ligand, WNT1 was also found to be rescued by E2. To our surprise, E2 was unable to replicate this success with ß-catenin, which is considered to be the intracellular transducer of canonical WNT signaling. However, WNT antagonist - Dkk1 blocked the E2-mediated recovery in the expression of the differentiation marker, MAP2. Therefore, our data suggests that E2-mediated recovery in SH-SY5Y differentiation follows a divergent pathway from the conventional canonical WNT signaling pathway, which seems to regulate microtubule stability without the involvement of ß-catenin. This mechanism provides fresh insight into how estradiol contributes to the restoration of differentiation marker proteins in the context of chronic neuroinflammation.


Assuntos
Neuroblastoma , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Meios de Cultivo Condicionados , Estradiol/farmacologia , Estradiol/metabolismo , Diferenciação Celular , Receptores de Estrogênio/metabolismo , Via de Sinalização Wnt , Antígenos de Diferenciação
2.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049762

RESUMO

Quinazolinedione is one of the most outstanding heterocycles in medicinal chemistry thanks to its wide ranges of biological activities including antimalarial, anticancer, and anti-inflammatory. TCMDC-125133 containing a quinazolinedione pharmacophore displays promising antimalarial activity and low toxicity, as described in the GlaxoSmithKline (GSK) report. Herein, the design and synthesis of novel quinazolinedione derivatives is described on the basis of our previous work on the synthesis of TCMDC-125133, where low-cost chemicals and greener alternatives were used when possible. The initial SAR study focused on the replacement of the valine linker moiety; according to the in silico prediction using SwissADME, concise four-step syntheses toward compounds 4-10 were developed. The in-house synthesized compounds 4-10 were assayed for antimalarial activity against P. falciparum 3D7, and the result revealed that only the compound 2 containing a valine linker was tolerated. Another round of lead optimization focused on the replacement of the m-anisidine moiety in compound 2. A library of 12 derivatives was prepared, and the antimalarial assay showed that potent antimalarial activity could be maintained by replacing the methoxy group in the meta position of the phenyl side chain with a fluorine or chlorine atom (21: IC50 = 36 ± 5 nM, 24: IC50 = 22 ± 5 nM). Further lead optimization is underway to enhance the antimalarial activity of this class of compound. The compounds included in the study possess little to no antiproliferative activity against MCF-7 cells.


Assuntos
Antimaláricos , Humanos , Antimaláricos/química , Células MCF-7 , Plasmodium falciparum , Relação Estrutura-Atividade
4.
In Vitro Cell Dev Biol Anim ; 58(1): 29-36, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34907494

RESUMO

Chrysoeriol, a dietary methoxyflavonoid which is found in tropical medicinal plants, has been shown to have antioxidant, anti-inflammatory, and antineoplastic properties. The present study aimed to investigate the effects of chrysoeriol and its related mechanisms in rat C6 glioma cells. Cell viability in rat C6 glioma cells were measured by MTT assay. The protein expression levels of cleaved caspase-3, caspase-3, pro-apoptotic (Bax), anti-apoptotic protein (Bcl-2), and Annexin V were detected by Western blot analysis and immunocytochemical staining. Results showed that chrysoeriol significantly decreased cell viability and induced apoptosis in rat C6 glioma cells. Chrysoeriol significantly increased the levels of Bax/Bcl-2 ratio and cleaved caspase-3/caspase-3 ratio. Moreover, treatment with chrysoeriol significantly reduced the phosphorylation of PI3K, Akt, and mTOR expression in ratios. These results suggest that chrysoeriol promote apoptosis in rat C6 glioma cells via suppression of the PI3K/Akt/mTOR signaling pathway, thereby demonstrating the potential antineoplastic effects of chrysoeriol on glioma cells.


Assuntos
Glioma , Doenças dos Roedores , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Flavonas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
5.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443430

RESUMO

Parkinson's disease (PD) is a currently incurable neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and α-synuclein aggregation. Accumulated evidence indicates that the saponins, especially from ginseng, have neuroprotective effects against neurodegenerative disorders. Interestingly, saponin can also be found in marine organisms such as the sea cucumber, but little is known about its effect in neurodegenerative disease, including PD. In this study, we investigated the anti-Parkinson effects of frondoside A (FA) from Cucumaria frondosa and ginsenoside Rg3 (Rg3) from Panax notoginseng in C. elegans PD model. Both saponins were tested for toxicity and optimal concentration by food clearance assay and used to treat 6-OHDA-induced BZ555 and transgenic α-synuclein NL5901 strains in C. elegans. Treatment with FA and Rg3 significantly attenuated DAergic neurodegeneration induced by 6-OHDA in BZ555 strain, improved basal slowing rate, and prolonged lifespan in the 6-OHDA-induced wild-type strain with downregulation of the apoptosis mediators, egl-1 and ced-3, and upregulation of sod-3 and cat-2. Interestingly, only FA reduced α-synuclein aggregation, rescued lifespan in NL5901, and upregulated the protein degradation regulators, including ubh-4, hsf-1, hsp-16.1 and hsp-16.2. This study indicates that both FA and Rg3 possess beneficial effects in rescuing DAergic neurodegeneration in the 6-OHDA-induced C. elegans model through suppressing apoptosis mediators and stimulating antioxidant enzymes. In addition, FA could attenuate α-synuclein aggregation through the protein degradation process.


Assuntos
Caenorhabditis elegans/fisiologia , Ginsenosídeos/farmacologia , Glicosídeos/farmacologia , Doença de Parkinson/patologia , Triterpenos/farmacologia , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Ginsenosídeos/toxicidade , Glicosídeos/química , Glicosídeos/toxicidade , Longevidade/efeitos dos fármacos , Degeneração Neural/complicações , Degeneração Neural/patologia , Oxidopamina , Doença de Parkinson/complicações , Proteólise/efeitos dos fármacos , Triterpenos/química , Triterpenos/toxicidade , alfa-Sinucleína/metabolismo
6.
J Ethnopharmacol ; 279: 114347, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34147616

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Holothuria (Metriatyla) scabra Jaeger (H. scabra), sea cucumber, is the marine organism that has been used as traditional food and medicine to gain the health benefits since ancient time. Although our recent studies have shown that crude extracts from H. scabra exhibited neuroprotective effects against Parkinson's disease (PD), the underlying mechanisms and bioactive compounds are still unknown. AIM OF THE STUDY: In the present study, we examined the efficacy of purified compounds from H. scabra and their underlying mechanism on α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration in a transgenic Caenorhabditis elegans PD model. MATERIAL AND METHODS: The H. scabra compounds (HSEA-P1 and P2) were purified and examined for their toxicity and optimal dose-range by food-clearance and lifespan assays. The α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration were determined using transgenic C. elegans model, Punc-54::α-syn and Pdat-1:: α-syn; Pdat-1::GFP, respectively, and then further investigated by determining the behavioral assays including locomotion rate, basal slowing rate, ethanol avoidance, and area-restricted searching. The underlying mechanisms related to autophagy were clarified by quantitative PCR and RNAi experiments. RESULTS: Our results showed that HSEA-P1 and HSEA-P2 significantly diminished α-synuclein accumulation, improved motility deficits, and recovered the shortened lifespan. Moreover, HSEA-P1 and HSEA-P2 significantly protected dopaminergic neurons from α-synuclein toxicity and alleviated dopamine-associated behavioral deficits, i.e., basal slowing, ethanol avoidance, and area-restricted searching. HSEA-P1 and HSEA-P2 also up-regulated autophagy-related genes, including beclin-1/bec-1, lc-3/lgg-1, and atg-7/atg-7. RNA interference (RNAi) of these genes in transgenic α-synuclein worms confirmed that lc-3/lgg-1 and atg-7/atg-7 were required for α-synuclein degradation and DAergic neuroprotection activities of HSEA-P1 and HSEA-P2. NMR and mass spectrometry analysis revealed that the HSEA-P1 and HSEA-P2 contained diterpene glycosides. CONCLUSION: These findings indicate that diterpene glycosides extracted from H. scabra decreases α-synuclein accumulation and protects α-synuclein-mediated DAergic neuronal loss and its toxicities via lgg-1 and atg-7.


Assuntos
Diterpenos/farmacologia , Glicosídeos/farmacologia , Holothuria/química , Fármacos Neuroprotetores/farmacologia , Animais , Animais Geneticamente Modificados , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Diterpenos/isolamento & purificação , Neurônios Dopaminérgicos/efeitos dos fármacos , Glicosídeos/isolamento & purificação , Locomoção/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , alfa-Sinucleína/metabolismo
7.
Neurosci Lett ; 714: 134545, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622648

RESUMO

Chrysoeriol is a plant flavone extracted from the roots and leaves of the genus Phyllanthus. Although many biological properties of chrysoeriol have been reported, such as its antioxidant and anti-inflammatory activities, the effects of chrysoeriol on the cellular models of Parkinson's disease (PD) have not yet been elucidated. In the present study, we aimed to investigate whether chrysoeriol prevents neurotoxicity induced by 1-methyl-4-phenylpyridinium iodide (MPP+) in SH-SY5Y cells, a typical in vitro PD model. The cell viability was measured by MTT assay. The morphological changes of apoptotic cell nuclei were observed by Hoechst 33,342 staining. The expression of Bax, Bcl-2 and Caspase-3 were detected by western blot analysis. The mitochondria location in the cells was observed by Mitotracker staining. Mitochondrial membrane potential was evaluated by the JC-10 assay. Treatment with MPP+ significantly caused a decrease in the viability of cells and an increase in apoptosis, as evidenced by the upregulation of apoptotic cells, caspase-3 activity and antiapoptotic ratio. These effects were all reversed by pretreatment with chrysoeriol in SH-SY5Y cells. Moreover, pretreatment with chrysoeriol markedly mitigated the MPP+-caused increases in the levels of the prosurvial signaling proteins, phosphorylated Akt and phosphorylated mTOR. The presence of a specific PI3K inhibitor, wortmannin, particularly abolished the chrysoeriol-induced activation of Akt phosphorylation and prevented the chrysoeriol-induced survival effect. These results indicate that the neuroprotective effect of chrysoeriol against MPP+ treatment requires the activation of PI3K/Akt pathway. Ultimately, chrysoeriol could be a promising therapeutic agent for the further experiment on the treatment of PD.


Assuntos
1-Metil-4-fenilpiridínio/antagonistas & inibidores , Flavonas/farmacologia , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flavonas/antagonistas & inibidores , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/fisiologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Wortmanina/farmacologia
8.
Heliyon ; 4(5): e00638, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29872770

RESUMO

Glioblastoma (GBM) is the most commonly diagnosed type of brain cancer and the leading cause of brain cancer-related death. GBM contains a subpopulation of tumor-propagating glioblastoma stem-like cells that are thought to drive cancer progression and recurrence. Although several clinical trials are ongoing to explore new chemotherapeutic agents to treat GBM, the use of metformin (Met), a first-line drug for type 2 diabetes mellitus, in cancer remains controversial. Here, we show that combining Met with 9-cis retinoic acid (9-cis RA) reduced the proliferation rate of C6-GSCs (glioblastoma stem-like cells) in vitro. The results of flow cytometric analysis showed that treatment with 9-cis RA for 24 h induced 4.5% early and 38.0% late apoptosis in C6-GSCs. Twenty-four hours of Met treatment induced 23.6% early and 33.5% late apoptosis in C6-GSCs. Combination of Met and 9-cis RA treatment significantly increased both early and late apoptosis to 30.4% and 55.4%, respectively. The present findings suggest that not only 9-cis RA but also Met has the potential to induce early and late apoptotic GSCs death by affecting the functional cytoplasmic and nuclear organelles. At the protein level, there was increased cleaved caspase-3 but decreased procaspase-3 expression in Met-, 9-cis RA- and Met+9-cis RA-treated C6 GSCs, as detected by western blotting. The ratio of cleaved caspase-3/procaspase-3 was 1.6 times higher in Met+9-cis RA-treated groups compared to control. Ultimately, a combination of Met and 9-cis RA might be a possible therapeutic target for the treatment of GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...