Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 26(1): 118-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107695

RESUMO

OBJECTIVE: The objective of this study was to characterize early osteoarthritis (OA) development in cartilage and bone tissues in the rat medial meniscus transection (MMT) model using non-destructive equilibrium partitioning of an ionic contrast agent micro-computed tomography (EPIC-µCT) imaging. Cartilage fibrillation, one of the first physiological developments in OA, was quantified in the rat tibial plateau as three-dimensional (3D) cartilage surface roughness using a custom surface-rendering algorithm. METHODS: Male Lewis rats underwent MMT or sham-operation in the left leg. At 1- and 3-weeks post-surgery, the animals (n = 7-8 per group) were euthanized and the left legs were scanned using EPIC-µCT imaging to quantify cartilage and bone parameters. In addition, a custom algorithm was developed to measure the roughness of 3D surfaces. This algorithm was validated and used to quantify cartilage surface roughness changes as a function of time post-surgery. RESULTS: MMT surgery resulted in significantly greater cartilage damage and subchondral bone sclerosis with the damage increasing in both severity and area from 1- to 3-weeks post-surgery. Analysis of rendered 3D surfaces could accurately distinguish early changes in joints developing OA, detecting significant increases of 45% and 124% in surface roughness at 1- and 3-weeks post-surgery respectively. CONCLUSION: Disease progression in the MMT model progresses sequentially through changes in the cartilage articular surface, extracellular matrix composition, and then osteophyte mineralization and subchondral bone sclerosis. Cartilage surface roughness is a quantitative, early indicator of degenerative joint disease in small animal OA models and can potentially be used to evaluate therapeutic strategies.


Assuntos
Doenças Ósseas/patologia , Doenças das Cartilagens/patologia , Osteoartrite do Joelho/patologia , Algoritmos , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/patologia , Doenças Ósseas/diagnóstico por imagem , Doenças das Cartilagens/diagnóstico por imagem , Modelos Animais de Doenças , Progressão da Doença , Extremidade Inferior/cirurgia , Masculino , Tamanho do Órgão , Osteoartrite do Joelho/diagnóstico por imagem , Osteófito/diagnóstico por imagem , Osteófito/patologia , Ratos Endogâmicos Lew , Microtomografia por Raio-X/métodos
2.
Osteoarthritis Cartilage ; 21(8): 1132-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747340

RESUMO

OBJECTIVE: Current histological scoring methods to evaluate efficacy of potential therapeutics for slowing or preventing joint degeneration are time-consuming and semi-quantitative in nature. Hence, there is a need to develop and standardize quantitative outcome measures to define sensitive metrics for studying potential therapeutics. The objectives of this study were to use equilibrium partitioning of an ionic contrast agent via Equilibrium Partitioning of an Ionic Contrast-Microcomputed tomography (EPIC-µCT) to quantitatively characterize morphological and compositional changes in the tibial articular cartilage in two distinct models of joint degeneration and define localized regions of interest to detect degenerative cartilage changes. MATERIALS AND METHODS: The monosodium iodoacetate (MIA) and medial meniscal transection (MMT) rat models were used in this study. Three weeks post-surgery, tibiae were analyzed using EPIC-µCT and histology. EPIC-µCT allowed measurement of 3D morphological changes in cartilage thickness, volume and composition. RESULTS: Extensive cartilage degeneration was observed throughout the joint in the MIA model after 3 weeks. In contrast, the MMT model showed more localized degeneration with regional thickening of the medial tibial plateau and a decrease in attenuation consistent with proteoglycan (PG) depletion. Focal lesions were also observed and 3D volume calculated as an additional outcome metric. CONCLUSIONS: EPIC-µCT was used to quantitatively assess joint degeneration in two distinct preclinical models. The MMT model showed similar features to human Osteoarthritis (OA), including localized lesion formation and PG loss, while the MIA model displayed extensive cartilage degeneration throughout the joint. EPIC-µCT imaging provides a rapid and quantitative screening tool for preclinical evaluation of OA therapeutics.


Assuntos
Artrite Experimental/patologia , Cartilagem Articular/patologia , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Processamento de Imagem Assistida por Computador/métodos , Ácido Iodoacético , Masculino , Proteoglicanas/metabolismo , Ratos , Ratos Wistar , Tíbia/patologia , Lesões do Menisco Tibial , Microtomografia por Raio-X/métodos
3.
Osteoarthritis Cartilage ; 18(1): 65-72, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19744590

RESUMO

OBJECTIVE: The objective of this study was to evaluate the feasibility of quantifying the Equilibrium Partitioning of an Ionic Contrast agent via Microcomputed Tomography (EPIC-microCT) to nondestructively assess sulfated glycosaminoglycan (sGAG) content and distribution in rat articular cartilage ex vivo, and in doing so to establish a paradigm for extension of this technique to other small animal models. DESIGN: After determination of an appropriate incubation time for the anionic contrast agent, EPIC-microCT was used to examine age-related differences in cartilage sGAG content between 4-, 8-, and 16-week old (n=5 each) male Wistar rats and to evaluate sGAG depletion in the right femora of each age group after 60 min of digestion with chondroitinase ABC. The EPIC-microCT measurements were validated by histological safranin-O staining, and reproducibility was evaluated by triplicate scans of six femora. RESULTS: Cartilage attenuation gradually increased with cumulative digestion time and reached a plateau at approximately 60 min with a 16.0% temporal increase (P<0.01). Average femoral articular cartilage attenuation increased by 14.2% from 4- to 8-weeks of age (P<0.01) and further increased by 2.5% from 8 to 16 weeks (P<0.05). After 60 min of digestion, femoral articular cartilage attenuations increased by 15-17% in each age group (P<0.01). Correspondingly, sGAG optical density decreased with age and digestion, and showed a linear correlation (r=-0.88, slope=-1.26, P<0.01, n=30) with EPIC-microCT cartilage attenuation. High reproducibility was indicated by a low coefficient of variation (1.5%) in cartilage attenuation. CONCLUSIONS: EPIC-microCT imaging provides high spatial resolution and sensitivity to assess sGAG content and three-dimensional distribution in rat femoral articular cartilage.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Glicosaminoglicanos/análise , Tomografia Computadorizada por Raios X/métodos , Animais , Cartilagem Articular/patologia , Meios de Contraste , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Imageamento Tridimensional/métodos , Masculino , Microrradiografia , Ratos , Ratos Wistar
4.
Osteoarthritis Cartilage ; 17(3): 313-20, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18789727

RESUMO

OBJECTIVE: The objective of the present study was to validate the ability of Equilibrium Partitioning of an Ionic Contrast agent via microcomputed tomography (EPIC-microCT) to nondestructively assess cartilage morphology in the rat model. DESIGN: An appropriate contrast agent (Hexabrix) concentration and incubation time for equilibration were determined for reproducible segmentation of femoral articular cartilage from contrast-enhanced microCT scans. Reproducibility was evaluated by triplicate scans of six femora, and the measured articular cartilage thickness was independently compared to thickness determined from needle probe testing and histology. The validated technique was then applied to quantify age-related differences in articular cartilage morphology between 4, 8, and 16-week-old (n=5 each) male Wistar rats. RESULTS: A 40% Hexabrix/60% phosphate buffered saline (PBS) solution with 30 min incubation was optimal for segmenting cartilage from the underlying bone tissue and other soft tissues in the rat model. High reproducibility was indicated by the low coefficient of variation (1.7-2.5%) in cartilage volume, thickness and surface area. EPIC-microCT evaluation of thickness showed a strong linear relationship and good agreement with both needle probing (r(2)=0.95, slope=0.81, P<0.01, mean difference 11+/-22 microm, n=43) and histology (r(2)=0.99, slope=0.97, P<0.01, mean difference 12+/-10 microm, n=30). Cartilage volume and thickness significantly decreased with age while surface area significantly increased. CONCLUSION: EPIC-microCT imaging has the ability to nondestructively evaluate three-dimensional articular cartilage morphology with high precision and accuracy in a small animal model.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Meios de Contraste/farmacocinética , Imageamento Tridimensional/métodos , Ácido Ioxáglico/farmacocinética , Fatores Etários , Animais , Cartilagem Articular/anatomia & histologia , Cartilagem Articular/crescimento & desenvolvimento , Modelos Animais de Doenças , Fêmur , Masculino , Microrradiografia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Estatística como Assunto , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...