Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am Soc Clin Oncol Educ Book ; 38: 592-603, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30231316

RESUMO

Immune-based treatment strategies, such as checkpoint inhibition and chimeric antigen receptor (CAR) T cells, have started a new frontier for treatment in non-Hodgkin lymphoma (NHL). Checkpoint inhibition has been most successful in Hodgkin lymphoma, where higher expression of PD-L1 is correlated with better overall response rate. Combinations of checkpoint inhibition with various chemotherapy or biologics are in clinical trials, with initially promising results and manageable safety profiles. CAR T-cell therapies that target CD19 are a promising and attractive therapy for B-cell NHLs, with a product approved by the US Food and Drug Administration in 2017. Changes in the target, hinge, or costimulatory domain can dramatically alter the persistence and efficacy of the CAR T cells. The ZUMA trials from Kite used CD19-(CD28z) CAR T cells, whereas the TRANSCEND studies from Juno and the JULIET studies from Novartis used CD19-(4-1BBz) CARs. Despite the recent successes with CAR T-cell clinical trials, major concerns associated with this therapy include cytokine release syndrome, potential neurotoxicities, B-cell aplasia, loss of tumor antigen leading to relapse, and cost and accessibility of the treatment. Although first-generation CAR T-cell therapies have failed in solid malignancies, newer second- and third-generation CAR T cells that target antigens other than CD19 (such as mesothelin or B-cell maturation antigen) are being studied in clinical trials for treatment of lung cancer or multiple myeloma. Overall, immune-based treatment strategies have given oncologists and patients hope when there used to be none, as well as a new basket of tools yet to come with further research and development.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/tratamento farmacológico , Humanos , Linfoma não Hodgkin/patologia
3.
Sci Adv ; 2(9): e1600025, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704040

RESUMO

Early identification of pathogens is essential for limiting development of therapy-resistant pathogens and mitigating infectious disease outbreaks. Most bacterial detection schemes use target-specific probes to differentiate pathogen species, creating time and cost inefficiencies in identifying newly discovered organisms. We present a novel universal microbial diagnostics (UMD) platform to screen for microbial organisms in an infectious sample, using a small number of random DNA probes that are agnostic to the target DNA sequences. Our platform leverages the theory of sparse signal recovery (compressive sensing) to identify the composition of a microbial sample that potentially contains novel or mutant species. We validated the UMD platform in vitro using five random probes to recover 11 pathogenic bacteria. We further demonstrated in silico that UMD can be generalized to screen for common human pathogens in different taxonomy levels. UMD's unorthodox sensing approach opens the door to more efficient and universal molecular diagnostics.


Assuntos
Bactérias/genética , Sondas de DNA/genética , DNA Bacteriano/genética , Infecções/diagnóstico , Bactérias/isolamento & purificação , Bactérias/patogenicidade , DNA Bacteriano/classificação , Humanos , Infecções/genética , Infecções/microbiologia , Reação em Cadeia da Polimerase
4.
Nanoscale Res Lett ; 11(1): 303, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27316744

RESUMO

When plasmonic nanoparticles (NPs) are internalized by cells and agglomerate within intracellular vesicles, their optical spectra can shift and broaden as a result of plasmonic coupling of NPs in close proximity to one another. For such optical changes to be accounted for in the design of plasmonic NPs for light-based biomedical applications, quantitative design relationships between designable factors and spectral shifts need to be established. Here we begin building such a framework by investigating how functionalization of gold NPs (AuNPs) with biocompatible poly(ethylene) glycol (PEG), and the serum conditions in which the NPs are introduced to cells impact the optical changes exhibited by NPs in a cellular context. Utilizing darkfield hyperspectral imaging, we find that PEGylation decreases the spectral shifting and spectral broadening experienced by 100 nm AuNPs following uptake by Sk-Br-3 cells, but up to a 33 ± 12 nm shift in the spectral peak wavelength can still occur. The serum protein-containing biological medium also modulates the spectral changes experienced by cell-exposed NPs through the formation of a protein corona on the surface of NPs that mediates NP interactions with cells: PEGylated AuNPs exposed to cells in serum-free conditions experience greater spectral shifts than in serum-containing environments. Moreover, increased concentrations of serum (10, 25, or 50 %) result in the formation of smaller intracellular NP clusters and correspondingly reduced spectral shifts after 5 and 10 h NP-cell exposure. However, after 24 h, NP cluster size and spectral shifts are comparable and become independent of serum concentration. By elucidating the impact of PEGylation and serum concentration on the spectral changes experienced by plasmonic NPs in cells, this study provides a foundation for the optical engineering of plasmonic NPs for use in biomedical environments.

5.
J Nanobiotechnology ; 14: 24, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029613

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) have shown great promise as scaffolds for gene therapy vectors due to their attractive physiochemical properties which include biocompatibility, ease of functionalization via the nearly covalent gold-sulfur dative bond, and surface plasmon optical properties. Previously, we synthesized stable AuNP-polyamidoamine (AuPAMAM) conjugates and showed their success in vitro as non-viral gene delivery vectors. RESULTS: In this study, we systematically perturbed each component of the AuPAMAM conjugates and analyzed the resulting effect on transfection efficiency. Due to the modular, bottom-up nature of the AuPAMAM synthesis, we were able to probe each step of the fabrication process. The relationship between each conjugation parameter and the function of the final vector were investigated. More than fourfold enhanced transfection efficiency was achieved by modifying the PAMAM concentration, PAMAM core chemistry, PAMAM terminus chemistry, and self-assembled monolayer composition of the AuPAMAM conjugates. CONCLUSIONS: This work suggest that AuPAMAM synthesis platform is a promising non-viral gene therapy approach and highlights the importance of inspecting the role of each individual constituent in all nanotechnology hybrid materials.


Assuntos
Dendrímeros/química , Ouro/química , Nanopartículas Metálicas/química , Materiais Biocompatíveis/química , Nanotecnologia/métodos , Propriedades de Superfície , Transfecção/métodos
6.
Nanoscale Res Lett ; 9(1): 454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258596

RESUMO

Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based. Here we systematically study and quantify how metal NPs' optical spectra change upon introduction to a cellular environment in which NPs agglomerate within endosomal vesicles. Using darkfield hyperspectral imaging, we measure changes in the peak wavelength, broadening, and distribution of 100-nm spherical gold NPs' optical spectra following introduction to human breast adenocarcinoma Sk-Br-3 cells as a function of NP exposure dose and time. On a cellular level, spectra shift up to 78.6 ± 23.5 nm after 24 h of NP exposure. Importantly, spectra broaden with time, achieving a spectral width of 105.9 ± 11.7 nm at 95% of the spectrum's maximum intensity after 24 h. On an individual intracellular NP cluster (NPC) level, spectra also show significant shifting, broadening, and heterogeneity after 24 h. Cellular transmission electron microscopy (TEM) and electromagnetic simulations of NPCs support the trends in spectral changes we measured. These quantitative data can help guide the design of metal NPs introduced to cellular environments in plasmonic NP-mediated biomedical technologies.

7.
Nanoscale ; 6(18): 10701-9, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25096858

RESUMO

Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.


Assuntos
Ouro/química , Nanopartículas/química , Nanoconchas/química , Lasers , Nanoconchas/ultraestrutura , Compostos de Organossilício , Silanos/química , Dióxido de Silício/química , Espectrofotometria Infravermelho , Temperatura
8.
Small ; 10(16): 3246-51, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24729414

RESUMO

Designed and fabrication of a novel magnetic hollow gold nanoshell complexes that incorporates iron oxide nanoparticles in the hollow interior. The combined effect of the smaller IONPs improved the overall magnetic properties of the design and MRI contrast capability. The overall complex could be synthesized in the range of 60-80 nm in diameter while still having a plasmonic peak in the near infrared region.


Assuntos
Óxido Ferroso-Férrico/química , Ouro/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanoconchas/química , Prata/química , Microscopia Eletrônica de Transmissão
9.
Biomaterials ; 35(5): 1725-1734, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286816

RESUMO

The development of efficient and biocompatible non-viral vectors for gene therapy remains a great challenge, and exploiting the properties of both nanoparticle carriers and cationic polymers is an attractive approach. In this work, we have developed gold nanoparticle (AuNP) polyamidoamine (PAMAM) conjugates for use as non-viral transfection agents. AuPAMAM conjugates were prepared by crosslinking PAMAM dendrimers to carboxylic-terminated AuNPs via EDC and sulfo-NHS chemistry. EDC and sulfo-NHS have been utilized widely and in numerous applications such as amino acid coupling; however, their use in the coupling of PAMAM dendrimers to AuNPs presents new challenges to form effective and stable constructs for delivery that have not yet been examined. Enhanced colloidal stability and DNA condensation ability was established by probing two critical synthetic parameters: the reaction rate of the PAMAM crosslinking step, and the amine to carboxyl ratio. Based on this work, increasing the amine to carboxyl ratio during conjugation of PAMAM onto AuNPs yielded the optimal vector with respect to colloidal stability and transfection efficiency in vitro. AuPAMAM conjugates present attractive candidates for non-viral gene delivery due to their commercial availability, ease of fabrication and scale-up, high yield, high transfection efficiency and low cytotoxicity.


Assuntos
Dendrímeros/química , Terapia Genética , Ouro/química , Nanopartículas Metálicas , Linhagem Celular , Dendrímeros/síntese química , Humanos , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Transfecção
10.
PLoS One ; 8(7): e69073, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935927

RESUMO

Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b(+)Ly-6G/C(+) myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.


Assuntos
Ouro/uso terapêutico , Hipertermia Induzida , Imunoterapia Adotiva , Melanoma/terapia , Nanoconchas/uso terapêutico , Fototerapia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Melanoma/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Células Mieloides/patologia , Ovalbumina , Recidiva
11.
Nanoscale Res Lett ; 6(1): 428, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21711955

RESUMO

An in depth analysis of gold nanoparticle (AuNP) synthesis and size tuning, utilizing carbon monoxide (CO) gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...