Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 132706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825294

RESUMO

Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.


Assuntos
Benzeno , Celulose , Nanopartículas , Celulose/química , Benzeno/química , Benzeno/análise , Nanopartículas/química , Pontos Quânticos/química , Grafite/química , Fluorescência , Gases/análise , Gases/química , Cor , Fótons
2.
Chemosphere ; 361: 142530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851511

RESUMO

Chiroptical sensing with real-time colorimetrical detection has been emerged as quantifiable properties, enantioselective responsiveness, and optical manipulation in environmental monitoring, food safety and other trace identification fields. However, the sensitivity of chiroptical sensing materials remains an immense challenge. Here, we report a dynamically crosslinking strategy to facilitate highly sensitive chiroptical sensing material. Chiral nematic cellulose nanocrystals (CNC) were co-assembled with amino acid by a two-step esterification, of which a precisely tunable helical pitch, a unique spiral conformation with hierarchical and numerous active sites in sensing performance could be trigged by dynamic covalent bond on amines. Such a CNC/amino acid chiral optics features an ultra-trace amount of 0.08 mg/m3 and a high sensitivity of 60 nm/(mg/m3) for formaldehyde gas at a molecule level detection, which is due to the three synergistic adsorption enhancement of dynamic covalent bonded interaction, hydrogen bonded interaction and van der Waals interaction. Meanwhile, an enhancement hierarchical adsorption of CNC/amino acid chiral materials can be readily representative to the precise helical pitch and colorimetrical switch for sensitive visualization reorganization.


Assuntos
Celulose , Nanopartículas , Compostos Orgânicos Voláteis , Celulose/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Nanopartículas/química , Monitoramento Ambiental/métodos , Aminoácidos/análise , Aminoácidos/química , Colorimetria/métodos , Estereoisomerismo , Formaldeído/química , Formaldeído/análise , Adsorção
3.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337291

RESUMO

Chiral nematic materials have been attracting attention in fields of advanced functional applications due to their unique iridescent colors and tunable helical structure. A precisely decreased pitch is of importance for construction and applications of chiral nematic materials; however, it remains a huge challenge. Herein, cellulose nanocrystal (CNC) is selected as a constructed matrix for chiral nematic films, and ferric chloride (FeCl3) is used as a modification agent. We investigate the effects of the ferric ion loads on the helical structure and optical characteristics of iridescent film. Subsequently, the influence of ferric ions on the assembly process of CNC liquid crystal and the regulation of the structure color of self-assembled monolayers are discussed. Therefore, the CNC/FeCl3 chiral nematic films showed a blueshifted structural color from orange to blue, which highlights a simple route to achieve the regulation of decreased pitch. Further, we have applied this CNC/FeCl3 chiral nematic film for benzene gas detection. The sensing performance shows that the CNC/FeCl3 chiral nematic film reacts to benzene gas, which can be merged into the nematic layer of the CNC and trigger the iron ions chelated on the CNC, consequently arousing the redshift of the reflected wavelength and the effective colorimetric transition. This CNC/FeCl3 chiral nematic film is anticipated to boost a new gas sensing mechanism for faster and more effective in-situ qualitative investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...