Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(1): 244-250, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38153126

RESUMO

Photoexcitation of molecular electron donor and/or acceptor chromophore aggregates can greatly affect their charge-transfer dynamics. Excitonic coupling not only alters the energy landscape in the excited state but may also open new photophysical pathways, such as symmetry-breaking charge separation (SB-CS). Here, we investigate the impact of excitonic coupling on a covalent donor-acceptor-acceptor system comprising a perylene donor (Per) and two perylenediimide (PDI) acceptor chromophores in which the three components are π-stacked in a geometry that is slipped along their long axes (Per-PDI2). Following selective photoexcitation of PDI, femtosecond transient absorption data for Per-PDI2 is compared to that for the single-donor, single-acceptor Per-PDI system, and the PDI2 dimer, which both have the same interchromophore geometry as Per-PDI2. The data show that electron transfer from Per to the lower exciton state of the PDI dimer is slower than that of the single PDI acceptor system. This is due to the lower free energy of the reaction for charge separation because of the electronic stabilization afforded by the excitonic coupling between the PDIs. While PDI2 was shown previously to undergo ultrafast SB-CS, the strong π-π electronic interaction of Per with the adjacent PDI in Per-PDI2 breaks the electronic symmetry of the PDI dimer, resulting in the oxidation of Per rather than SB-CS. These results show that the electronic coupling between molecules designed to accept charges produced by SB-CS in molecular dimers and the chromophores comprising the dimer must be balanced to favor SB-CS.

2.
J Am Chem Soc ; 145(27): 14922-14931, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364237

RESUMO

Quantum sensing affords the possibility of using quantum entanglement to probe electromagnetic fields with exquisite sensitivity. In this work, we show that a photogenerated spin-correlated radical ion pair (SCRP) can be used to sense an electric field change created at one radical ion of the pair using molecular recognition. The SCRP is generated within a covalent donor-chromophore-acceptor system PXX-PMI-NDI, 1, where PXX = peri-xanthenoxanthene, PMI = 1,6-bis(p-t-butylphenoxy)perylene-3,4-dicarboximide, and NDI = naphthalene-1,8:4,5-bis(dicarboximide). The electron-rich PXX donor in 1 acts as a guest molecule that can be encapsulated selectively by a tetracationic cyclophane ExBox4+ host to give a supramolecular complex 1 ⊂ ExBox4+. Selective photoexcitation of the PMI chromophore results in ultrafast generation of the PXX•+-PMI-NDI•- SCRP. When PXX is encapsulated by ExBox4+, the cyclophane generates an electric field that repels the positive charge on PXX•+ within PXX•+-PMI-NDI•-, reducing the SCRP distance, i.e., the distance between the centers-of-charge on the donor and acceptor. Pulse-EPR measurements are used to measure the coherent oscillations created primarily by the electron-electron dipolar coupling in the SCRP, which yields the distance between the two charges (spins) of PXX•+-PMI-NDI•-. The experimental results show that the distance between PXX•+ and NDI•- decreases when ExBox4+ encapsulates PXX•+, which demonstrates that the SCRP can function as a quantum sensor to detect electric field changes in the vicinity of the radical ions.

3.
J Phys Chem Lett ; 14(10): 2573-2579, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36880847

RESUMO

Singlet fission (SF) is a spin-allowed process in which a photogenerated singlet exciton down-converts into two triplet excitons. Perylene-3,4-dicarboximide (PMI) has singlet and triplet state energies of 2.4 and 1.1 eV, respectively; thus making SF slightly exoergic and providing triplet excitons that have sufficient energy to raise the efficiency of single-junction solar cells by reducing thermalization losses from hot excitons formed when absorbed photons have energies higher than the semiconductor bandgap. However, PMI SF in the solid state has not been studied previously. Here, we show that 2,5-diphenyl-N-(2-ethylhexyl)perylene-3,4-dicarboximide (dp-PMI) crystallizes into a slip-stacked intermolecular morphology favorable for SF. Transient absorption microscopy and spectroscopy show that dp-PMI SF occurs in ≤50 ps in both single crystals and polycrystalline thin films with a triplet yield of 150 ± 20%. Ultrafast SF in the solid state, the high triplet yield, and its photostability make dp-PMI an attractive candidate for SF-enhanced solar cells.

4.
Angew Chem Int Ed Engl ; 62(6): e202214668, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469535

RESUMO

Photoexcited organic chromophores appended to stable radicals can serve as qubit and/or qudit candidates for quantum information applications. 1,6,7,12-Tetra-(4-tert-butylphenoxy)-perylene-3,4 : 9,10-bis(dicarboximide) (tpPDI) linked to a partially deuterated α,γ-bisdiphenylene-ß-phenylallyl radical (BDPA-d16 ) was synthesized and characterized by time-resolved optical and electron paramagnetic resonance (EPR) spectroscopies. Photoexcitation of tpPDI-BDPA-d16 results in ultrafast radical-enhanced intersystem crossing to produce a quartet state (Q) followed by formation of a spin-polarized doublet ground state (D0 ). Pulse-EPR experiments confirmed the spin multiplicity of Q and yielded coherence times of Tm =2.1±0.1 µs and 2.8±0.2 µs for Q and D0 , respectively. BDPA-d16 eliminates the dominant 1 H hyperfine couplings, resulting in a single narrow line for both the Q and D0 states, which enhances the spectral resolution needed for good qubit addressability.

5.
J Am Chem Soc ; 144(25): 11386-11396, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699940

RESUMO

Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.


Assuntos
Vibração , Transferência de Energia , Imidas , Perileno/análogos & derivados , Análise Espectral/métodos
6.
Nat Chem ; 14(7): 786-793, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469005

RESUMO

Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.

7.
J Phys Chem B ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133180

RESUMO

The excited-state dynamics of a spiro-fused terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer (sTDI2) in toluene and 2-methyltetrahydrofuran (mTHF) were investigated as a function of temperature using femtosecond- and nanosecond-transient absorption spectroscopy, as well as two-dimensional electronic spectroscopy. The spiro conjugation and the corresponding geometry of this compound guarantee a short intermonomer distance along with a partial orbital overlap between the orthogonal TDI π-electron systems, providing electronic coupling between the TDIs. Photoexcitation of sTDI2 in toluene, a low dielectric solvent, at 295 K, results in the ultrafast formation of a state composed of a coherent mixture of singlet 1(S1S0), multiexciton 1(T1T1), and charge-transfer (CT) electronic characters. This mixed species decays to decorrelated triplet states on the nanosecond timescale, completing the process of intramolecular singlet fission (SF) in sTDI2. Upon decreasing the temperature from 295 to 200 K, the contribution of the 1(T1T1) state to the mixed species decreases concurrently with an increase in the CT state character. We attribute this behavior to the variation in the vibrational energy level alignment between the states comprising the mixture due to changes in the temperature and hence the local dielectric environment. In contrast, photoexcitation of sTDI2 in more polar mTHF at 295 K results in the formation of a mixed singlet and CT state before undergoing symmetry-breaking charge separation, owing to the increased stabilization of the CT state in the medium. However, in glassy mTHF at 85 K, photoexcited sTDI2 exhibits discernible multiexciton character, comparable to that observed in toluene at 200 K, which we rationalize by the similarity of the dielectric constants under these two sets of conditions. These observations of mixed states of varying diabatic contributions over the range of experimental conditions show that the temperature and the static dielectric constant can directly control the composition of the electronically mixed excited state of sTDI2 and thus the fate of the SF process.

8.
J Chem Phys ; 153(24): 244306, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380082

RESUMO

We have studied two regioisomeric terrylenediimide (TDI) dimers in which the 1-positions of two TDIs are linked via 1,3- or 1,4-phenylene spacers, mTDI2 and pTDI, respectively. The nature and the dynamics of the multiexciton state are tuned by altering the through-bond electronic couplings in the ground and excited states and by changing the solvent environment. Our results show that controlling the electronic coupling between the two chromophores by an appropriate choice of linker can result in independent triplet state formation, even though the initial correlated triplet pair state is confined to a dimer. Moreover, even in polar solvents, if the electronic coupling is strong, the correlated triplet pair state is observed prior to symmetry-breaking charge separation. These results point out the close relationship between the singlet, correlated triplet pair, and charge transfer states in molecular dimers.

9.
J Am Chem Soc ; 142(19): 8938-8945, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32243141

RESUMO

We report the encapsulation of free-base and zinc porphyrins by a tricyclic cyclophane receptor with subnanomolar binding affinities in water. The high affinities are sustained by the hydrophobic effect and multiple [CH···π] interactions covering large [π···π] stacking surfaces between the substrate porphyrins and the receptor. We discovered two co-conformational isomers of the 1:1 complex, where the porphyrin is orientated differently inside the binding cavity of the receptor on account of its tricyclic nature. The photophysical properties and chemical reactivities of the encapsulated porphyrins are modulated to a considerable extent by the receptor. Improved fluorescence quantum yields, red-shifted absorptions and emissions, and nearly quantitative energy transfer processes highlight the emergent photophysical enhancements. The encapsulated porphyrins enjoy unprecedented chemical stabilities, where their D/H exchange, protonation, and solvolysis under extremely acidic conditions are completely blocked. We anticipate that the ultrahigh stabilities and improved optical properties of these encapsulated porphyrins will find applications in single-molecule materials, artificial photodevices, and biomedical appliances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...