Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(6): 106904, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275530

RESUMO

CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.

2.
J Immunol ; 208(9): 2239-2245, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418466

RESUMO

IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells including T lymphocytes. In this study, we demonstrate that IL-27 directly induces CCL5 production by T lymphocytes, particularly CD8+ T cells in vitro and in vivo. IL-27-induced CCL5 production is IL-27R-dependent. In CD4+ T cells, IL-27-induced CCL5 production was primarily dependent on Stat1 activation, whereas in CD8+ T cells, Stat1 deficiency does not abrogate CCL5 induction. A chromatin immunoprecipitation assay revealed that in the CCL5 promoter region, both putative Stat3 binding sites exhibit significant binding to Stat3, whereas only one out of four Stat1 binding sites displays moderate binding to Stat1. In tumor-bearing mice, IL-27 induced dramatic production of CCL5 in tumor-infiltrating T cells. IL-27-induced CCL5 appears to contribute to an IL-27-mediated antitumor effect. This is signified by diminished tumor inhibition in anti-CCL5- and IL-27-treated mice. Additionally, intratumor delivery of CCL5 mRNA using lipid nanoparticles significantly inhibited tumor growth. Thus, IL-27 induces robust CCL5 production by T cells, which contributes to antitumor activity.


Assuntos
Interleucina-27 , Animais , Linfócitos T CD8-Positivos , Citocinas , Expressão Gênica , Lipossomos , Camundongos , Nanopartículas
3.
Front Cell Dev Biol ; 10: 853652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399501

RESUMO

BRD4, a chromatin modifier frequently upregulated in a variety of neoplasms including hepatocellular cancer (HCC), promotes cancer cell growth by activating oncogenes through its interaction with acetylated histone tails of nucleosomes. Here, we determined the anti-HCC efficacy of AZD5153, a potent bivalent BRD4 inhibitor, and elucidated its underlying molecular mechanism of action. AZD5153 treatment inhibited HCC cell proliferation, clonogenic survival and induced apoptosis in HCC cells. In vivo, AZD5153-formulated lipid nanoemulsions inhibited both orthotopic and subcutaneous HCCLM3 xenograft growth in NSG mice. Mapping of BRD4- chromosomal targets by ChIP-seq analysis identified the occupancy of BRD4 with the promoters, gene bodies, and super-enhancers of both mRNA and noncoding RNA genes, which were disrupted upon AZD5153 treatment. RNA-seq analysis of polyadenylated RNAs showed several BRD4 target genes involved in DNA replication, cell proliferation, and anti-apoptosis were repressed in AZD5153-treated HCC cells. In addition to known tumor-promoting genes, e.g., c-MYC, YAP1, RAD51B, TRIB3, SLC17A9, JADE1, we found that NAPRT, encoding a key enzyme for NAD+ biosynthesis from nicotinic acid, was also suppressed in HCC cells by the BRD4 inhibitor. Interestingly, AZD5153 treatment upregulated NAMPT, whose product is the rate-limiting enzyme for NAD+ synthesis from nicotinamide. This may explain why AZD5153 acted in concert with FK866, a potent NAMPT inhibitor, in reducing HCC cell proliferation and clonogenic survival. In conclusion, our results identified novel targets of BRD4 in the HCCLM3 cell genome and demonstrated anti-HCC efficacy of AZD5153, which was potentiated in combination with an NAMPT inhibitor.

4.
Am J Pathol ; 192(1): 56-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599880

RESUMO

N6-methyladenosine (m6A), the most abundant internal modifier of mRNAs installed by the methyltransferase 13 (METTL3) at the (G/A)(m6A)C motif, plays a critical role in the regulation of gene expression. METTL3 is essential for embryonic development, and its dysregulation is linked to various diseases. However, the role of METTL3 in liver biology is largely unknown. In this study, METTL3 function was unraveled in mice depleted of Mettl3 in neonatal livers (Mettl3fl/fl; Alb-Cre). Liver-specific Mettl3 knockout (M3LKO) mice exhibited global decrease in m6A on polyadenylated RNAs and pathologic features associated with nonalcoholic fatty liver disease (eg, hepatocyte ballooning, ductular reaction, microsteatosis, pleomorphic nuclei, DNA damage, foci of altered hepatocytes, focal lobular and portal inflammation, and elevated serum alanine transaminase/alkaline phosphatase levels). Mettl3-depleted hepatocytes were highly proliferative, with decreased numbers of binucleate hepatocytes and increased nuclear polyploidy. M3LKO livers were characterized by reduced m6A and expression of several key metabolic transcripts regulated by circadian rhythm and decreased nuclear protein levels of the core clock transcription factors BMAL1 and CLOCK. A significant decrease in total Bmal1 and Clock mRNAs but an increase in their nuclear levels were observed in M3LKO livers, suggesting impaired nuclear export. Consistent with the phenotype, methylated (m6A) RNA immunoprecipitation coupled with sequencing and RNA sequencing revealed transcriptome-wide loss of m6A markers and alterations in abundance of mRNAs involved in metabolism in M3LKO. Collectively, METTL3 and m6A modifications are critical regulators of liver homeostasis and function.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Homeostase , Fígado/metabolismo , Metiltransferases/metabolismo , Ploidias , Fatores de Transcrição ARNTL/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fígado/patologia , Camundongos Knockout , Poliadenilação , Poliploidia , Proteínas Tirosina Quinases/metabolismo , Transcriptoma/genética
5.
Mol Cancer Ther ; 19(2): 384-396, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31582534

RESUMO

Hepatocellular carcinoma (HCC), the most prevalent primary liver cancer, is a leading cause of cancer-related death worldwide because of rising incidence and limited therapy. Although treatment with sorafenib or lenvatinib is the standard of care in patients with advanced-stage HCC, the survival benefit from sorafenib is limited due to low response rate and drug resistance. Ibrutinib, an irreversible tyrosine kinase inhibitor (TKI) of the TEC (e.g., BTK) and ErbB (e.g., EGFR) families, is an approved treatment for B-cell malignancies. Here, we demonstrate that ibrutinib inhibits proliferation, spheroid formation, and clonogenic survival of HCC cells, including sorafenib-resistant cells. Mechanistically, ibrutinib inactivated EGFR and its downstream Akt and ERK signaling in HCC cells, and downregulated a set of critical genes involved in cell proliferation, migration, survival, and stemness, and upregulated genes promoting differentiation. Moreover, ibrutinib showed synergy with sorafenib or regorafenib, a sorafenib congener, by inducing apoptosis of HCC cells. In vivo, this TKI combination significantly inhibited HCC growth and prolonged survival of immune-deficient mice bearing human HCCLM3 xenograft tumors and immune-competent mice bearing orthotopic mouse Hepa tumors at a dose that did not exhibit systemic toxicity. In immune-competent mice, the ibrutinib-sorafenib combination reduced the numbers of BTK+ immune cells in the tumor microenvironment. Importantly, we found that the BTK+ immune cells were also enriched in the tumor microenvironment in a subset of primary human HCCs. Collectively, our findings implicate BTK signaling in hepatocarcinogenesis and support clinical trials of the sorafenib-ibrutinib combination for this deadly disease.


Assuntos
Adenina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperidinas/farmacologia , Sorafenibe/farmacologia , Adenina/administração & dosagem , Adenina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Piperidinas/administração & dosagem , Sorafenibe/administração & dosagem
6.
Am J Pathol ; 187(12): 2758-2774, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963035

RESUMO

Acetaminophen toxicity is a leading cause of acute liver failure (ALF). We found that miRNA-122 (miR-122) is down-regulated in liver biopsy specimens of patients with ALF and in acetaminophen-treated mice. A marked decrease in the primary miR-122 expression occurs in mice on acetaminophen overdose because of suppression of its key transactivators, hepatocyte nuclear factor (HNF)-4α and HNF6. More importantly, the mortality rates of male and female liver-specific miR-122 knockout (LKO) mice were significantly higher than control mice when injected i.p. with an acetaminophen dose not lethal to the control. LKO livers exhibited higher basal expression of cytochrome P450 family 2 subfamily E member 1 (CYP2E1) and cytochrome P450 family 1 subfamily A member 2 (CYP1A2) that convert acetaminophen to highly reactive N-acetyl-p-benzoquinone imine. Upregulation of Cyp1a2 primary transcript and mRNA in LKO mice correlated with the elevation of aryl hydrocarbon receptor (AHR) and mediator 1 (MED1), two transactivators of Cyp1a2. Analysis of ChIP-seq data in the ENCODE (Encyclopedia of DNA Element) database identified association of CCCTC-binding factor (CTCF) with Ahr promoter in mouse livers. Both MED1 and CTCF are validated conserved miR-122 targets. Furthermore, depletion of Ahr, Med1, or Ctcf in Mir122-/- hepatocytes reduced Cyp1a2 expression. Pulse-chase studies found that CYP2E1 protein level is upregulated in LKO hepatocytes. Notably, miR-122 depletion sensitized differentiated human HepaRG cells to acetaminophen toxicity that correlated with upregulation of AHR, MED1, and CYP1A2 expression. Collectively, these results reveal a critical role of miR-122 in acetaminophen detoxification and implicate its therapeutic potential in patients with ALF.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , MicroRNAs/metabolismo , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Animais , Citocromo P-450 CYP1A2/biossíntese , Citocromo P-450 CYP2E1/biossíntese , Feminino , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Masculino , Camundongos , Camundongos Knockout
7.
Circ Res ; 116(1): 23-34, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25323858

RESUMO

RATIONALE: MicroRNA miR145 has been implicated in vascular smooth muscle cell differentiation, but its mechanisms of action and downstream targets have not been fully defined. OBJECTIVE: Here, we sought to explore and define the mechanisms of miR145 function in smooth muscle cells. METHODS AND RESULTS: Using a combination of cell culture assays and in vivo mouse models to modulate miR145, we characterized its downstream actions on smooth muscle phenotypes. Our results show that the miR-143/145 gene cluster is induced in smooth muscle cells by coculture with endothelial cells. Endothelial cell-induced expression of miR-143/145 is augmented by Notch signaling and accordingly expression is reduced in Notch receptor-deficient cells. Screens to identify miR145-regulated genes revealed that the transforming growth factor (TGF)-ß pathway has a significantly high number of putative target genes, and we show that TGFß receptor II is a direct target of miR145. Extracellular matrix genes that are regulated by TGFß receptor II were attenuated by miR145 overexpression, and miR145 mutant mice exhibit an increase in extracellular matrix synthesis. Furthermore, activation of TGFß signaling via angiotensin II infusion revealed a pronounced fibrotic response in the absence of miR145. CONCLUSIONS: These data demonstrate a specific role for miR145 in the regulation of matrix gene expression in smooth muscle cells and suggest that miR145 acts to suppress TGFß-dependent extracellular matrix accumulation and fibrosis, while promoting TGFß-induced smooth muscle cell differentiation. Our findings offer evidence to explain how TGFß signaling exhibits distinct downstream actions via its regulation by a specific microRNA.


Assuntos
Matriz Extracelular/metabolismo , MicroRNAs/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Animais , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor do Fator de Crescimento Transformador beta Tipo II
8.
Vascul Pharmacol ; 63(2): 88-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25464923

RESUMO

A feature of vascular smooth muscle cells is their unique ability to exist in multiple phenotypes permitting a broad range of functions that include contraction, proliferation, or synthesis and secretion of extracellular matrix. Although it is known that these phenotypes can be overlapping, the mechanisms that regulate phenotypic modulation are still unclear. Given that endothelial cells are known to convey signals to smooth muscle cells that govern their activities within the vasculature; we sought to better define how endothelial cells regulate phenotypic changes of smooth muscle cells in coculture conditions. Using human aortic smooth muscle cells, we show that endothelial cells promote an increase in a differentiated/contractile phenotype while decreasing proliferation. Analysis of the synthetic phenotype demonstrates that endothelial cells also increase collagen synthesis and secretion. Characterization of pathways important for these endothelial cell-dependent phenotypes reveal that Notch signaling plays an important role in the establishment of these smooth muscle properties. These data highlight the ability of endothelial cells to control phenotypic modulation in a unique and previously undefined manner.


Assuntos
Miócitos de Músculo Liso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Fenótipo
9.
Stem Cells Dev ; 23(21): 2581-90, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24914692

RESUMO

Under defined conditions, mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit from treatments that include the formation of new blood vessels from mesenchymal stem cells. However, blood vessels are complex structures composed of endothelial cells and smooth muscle cells, and their assembly and function in a diseased environment is reliant upon joining with the pre-existing vasculature. Although endothelial cell/smooth muscle cell interactions are well known, how endothelial cells may influence mesenchymal stem cells and facilitate their differentiation has not been defined. Therefore, we sought to explore how endothelial cells might drive mesenchymal stem cells toward a smooth muscle fate. Our data show that cocultured endothelial cells induce smooth muscle cell differentiation in mesenchymal stem cells. Endothelial cells can promote a contractile phenotype, reduce proliferation, and enhance collagen synthesis and secretion. Our data show that Notch signaling is essential for endothelial cell-dependent differentiation, and this differentiation pathway is largely independent of growth factor signaling mechanisms.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Células Cultivadas , Técnicas de Cocultura , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D2/genética , Ciclina D2/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Receptor Notch3 , Receptores Notch/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Biol Chem ; 286(33): 29098-29107, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21666221

RESUMO

An increase in production of reactive oxygen species resulting in a decrease in nitric oxide bioavailability in the endothelium contributes to many cardiovascular diseases, and these reactive oxygen species can oxidize cellular macromolecules. Protein thiols are critical reducing equivalents that maintain cellular redox state and are primary targets for oxidative modification. We demonstrate endothelial NOS (eNOS) oxidant-induced protein thiyl radical formation from tetrahydrobiopterin-free enzyme or following exposure to exogenous superoxide using immunoblotting, immunostaining, and mass spectrometry. Spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) followed by immunoblotting using an anti-DMPO antibody demonstrated the formation of eNOS protein radicals, which were abolished by superoxide dismutase and L-NAME, indicating that protein radical formation was due to superoxide generation from the eNOS heme. With tetrahydrobiopterin-reconstituted eNOS, eNOS protein radical formation was completely inhibited. Using mass spectrometric and mutagenesis analysis, we identified Cys-908 as the residue involved in protein radical formation. Mutagenesis of this key cysteine to alanine abolished eNOS thiyl radical formation and uncoupled eNOS, leading to increased superoxide generation. Protein thiyl radical formation leads to oxidation or modification of cysteine with either disulfide bond formation or S-glutathionylation, which induces eNOS uncoupling. Furthermore, in endothelial cells treated with menadione to trigger cellular superoxide generation, eNOS protein radical formation, as visualized with confocal microscopy, was increased, and these results were confirmed by immunoprecipitation with anti-eNOS antibody, followed by immunoblotting with an anti-DMPO antibody. Thus, eNOS protein radical formation provides the basis for a mechanism of superoxide-directed regulation of eNOS, involving thiol oxidation, defining a unique pathway for the redox regulation of cardiovascular function.


Assuntos
Heme/química , Óxido Nítrico Sintase Tipo III/química , Superóxidos/química , Animais , Bovinos , Heme/metabolismo , Humanos , Mutagênese , NG-Nitroarginina Metil Éster/química , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Detecção de Spin/métodos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...