Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937970

RESUMO

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in human and mouse mandible tissues with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. Additionally, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.

2.
Hum Gene Ther ; 35(9-10): 317-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38534217

RESUMO

Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.


Assuntos
Doenças Ósseas , Dependovirus , Terapia Genética , Vetores Genéticos , Humanos , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Doenças Ósseas/terapia , Doenças Ósseas/genética , Animais , Técnicas de Transferência de Genes , Edição de Genes/métodos
3.
Biomolecules ; 13(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759764

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H (Acvr1R206H/+) while limiting the expression in non-skeletal organs such as the brain, heart, lung, liver, and kidney. AAV gene therapy carrying the combination of codon-optimized human ACVR1 (ACVR1opt) and artificial miRNAs targeting Activin A and its receptor ACVR1R206H ablated the aberrant activation of BMP-Smad1/5 signaling and the osteogenic differentiation of Acvr1R206H/+ skeletal progenitors. The local delivery of AAV gene therapy to HO-causing cells in the skeletal muscle resulted in a significant decrease in endochondral bone formation in Acvr1R206H/+ mice. These mice showed little to no expression in a major AAV-targeted organ, the liver, due to liver-abundant miR-122-mediated repression. Thus, AAV gene therapy is a promising therapeutic strategy to explore in suppressing HO in FOP.


Assuntos
Receptores de Ativinas Tipo I , Miosite Ossificante , Animais , Humanos , Camundongos , Receptores de Ativinas Tipo I/genética , Ativinas , Dependovirus/genética , Miosite Ossificante/genética , Miosite Ossificante/terapia , Osteogênese
4.
Exp Mol Med ; 55(1): 69-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599929

RESUMO

Haploinsufficiency of Runt-related transcription factor-2 (RUNX2) is responsible for cleidocranial dysplasia (CCD), a rare hereditary disease with a range of defects, including delayed closure of the cranial sutures and short stature. Symptom-based treatments, such as a combined surgical-orthodontic approach, are commonly used to treat CCD patients. However, there have been few reports of treatments based on Runx2-specific regulation targeting dwarfism symptoms. Previously, we found that the miR338 cluster, a potential diagnostic and therapeutic target for postmenopausal osteoporosis, could directly target Runx2 during osteoblast differentiation in vitro. Here, we generated miR338-/-;Runx2+/- mice to investigate whether inhibition of miR338 could rescue CCD defects caused by Runx2 mutation in vivo. We found that the dwarfism phenotype caused by Runx2 haploinsufficiency was recovered in miR338-/-;Runx2+/- mice, with complete bone density restoration and quicker closure of fontanels. Single-cell RNA-seq analysis revealed that knockout of miR338 specifically rescued the osteoblast lineage priming ability of bone marrow stromal cells in Runx2+/- femurs, which was further confirmed by Osterix-specific conditional knockout of miR338 in Runx2+/- mice (OsxCre; miR338 fl/fl;Runx2+/-). Mechanistically, ablation of the miR338 cluster in Runx2+/- femurs directly rescued the Hif1a-Vegfa pathway in Runx2+/- osteoblasts, as proven by gene expression profiles and ChIP and Re-ChIP assays. Collectively, our data revealed the genetic interaction between Runx2 and the miR338 cluster during osteoblast differentiation and implied that the miR338 cluster could be a potential therapeutic target for CCD.


Assuntos
Displasia Cleidocraniana , Animais , Camundongos , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Mutação , Osteoblastos/metabolismo , Osteogênese/genética
5.
Nat Commun ; 13(1): 6869, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369293

RESUMO

Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity.


Assuntos
Fosforilação Oxidativa , Células-Tronco , Camundongos , Animais , Células-Tronco/metabolismo , Transdução de Sinais , Osteogênese/genética , Diferenciação Celular , Estresse Oxidativo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Nat Commun ; 13(1): 6175, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258013

RESUMO

Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.


Assuntos
MicroRNAs , Miosite Ossificante , Ossificação Heterotópica , Adulto , Animais , Humanos , Camundongos , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Terapia Genética , Camundongos Transgênicos , Mutação , Miosite Ossificante/genética , Miosite Ossificante/terapia , Ossificação Heterotópica/genética , Ossificação Heterotópica/terapia , Ossificação Heterotópica/metabolismo , Osteogênese/genética , Adenoviridae/genética
7.
Mol Ther Nucleic Acids ; 29: 296-311, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950212

RESUMO

Osteoporosis occurs due to a dysregulation in bone remodeling, a process requiring both bone-forming osteoblasts and bone-resorbing osteoclasts. Current leading osteoporosis therapies suppress osteoclast-mediated bone resorption but show limited therapeutic effects because osteoblast-mediated bone formation decreases concurrently. We developed a gene therapy strategy for osteoporosis that simultaneously promotes bone formation and suppresses bone resorption by targeting two microRNAs (miRNAs)-miR-214-3p and miR-34a-5p. We modulated the expression of these miRNAs using systemically delivered recombinant adeno-associated viral (rAAV) vectors targeting the bone. rAAV-mediated overexpression of miR-214-3p or inhibition of miR-34a-5p in the skeleton resulted in bone loss in adult mice, resembling osteoporotic bones. Conversely, rAAV-mediated inhibition of miR-214-3p or overexpression of miR-34a-5p reversed bone loss in mouse models for postmenopausal and senile osteoporosis by increasing osteoblast-mediated bone formation and decreasing osteoclast-mediated bone resorption. Notably, these mice did not show any apparent pathological phenotypes in non-skeletal tissues. Mechanistically, inhibiting miR-214-3p upregulated activating transcription factor 4 in osteoblasts and phatase and tensin homolog in osteoclasts, while overexpressing miR-34a-5p downregulated Notch1 in osteoblasts and TGF-ß-induced factor homeobox 2 in osteoclasts. In summary, bone-targeting rAAV-mediated regulation of miR-214-3p or miR-34a-5p is a promising new approach to treat osteoporosis, while limiting adverse effects in non-skeletal tissues.

8.
Front Cell Dev Biol ; 9: 769193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901015

RESUMO

Embryonic development and stem cell differentiation are orchestrated by changes in sequential binding of regulatory transcriptional factors to their motifs. These processes are invariably accompanied by the alternations in chromatin accessibility, conformation, and histone modification. Odontoblast lineage originates from cranial neural crest cells and is crucial in dentinogenesis. Our previous work revealed several transcription factors (TFs) that promote odontoblast differentiation. However, it remains elusive as to whether chromatin accessibility affects odontoblast terminal differentiation. Herein, integration of single-cell RNA-seq and bulk RNA-seq revealed that in vitro odontoblast differentiation using dental papilla cells at E18.5 was comparable to the crown odontoblast differentiation trajectory of OC (osteocalcin)-positive odontogenic lineage. Before in vitro odontoblast differentiation, ATAC-seq and H3K27Ac CUT and Tag experiments demonstrated high accessibility of chromatin regions adjacent to genes associated with odontogenic potential. However, following odontoblastic induction, regions near mineralization-related genes became accessible. Integration of RNA-seq and ATAC-seq results further revealed that the expression levels of these genes were correlated with the accessibility of nearby chromatin. Time-course ATAC-seq experiments further demonstrated that odontoblast terminal differentiation was correlated with the occupation of the basic region/leucine zipper motif (bZIP) TF family, whereby we validated the positive role of ATF5 in vitro. Collectively, this study reports a global mapping of open chromatin regulatory elements during dentinogenesis and illustrates how these regions are regulated via dynamic binding of different TF families, resulting in odontoblast terminal differentiation. The findings also shed light on understanding the genetic regulation of dentin regeneration using dental mesenchymal stem cells.

9.
Cell Death Dis ; 12(2): 197, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608506

RESUMO

Transcription factors (TFs) regulate the expression of target genes, inducing changes in cell morphology or activities needed for cell fate determination and differentiation. The BMP signaling pathway is widely regarded as one of the most important pathways in vertebrate skeletal biology, of which BMP2 is a potent inducer, governing the osteoblast differentiation of bone marrow stromal cells (BMSCs). However, the mechanism by which BMP2 initiates its downstream transcription factor cascade and determines the direction of differentiation remains largely unknown. In this study, we used RNA-seq, ATAC-seq, and animal models to characterize the BMP2-dependent gene regulatory network governing osteoblast lineage commitment. Sp7-Cre; Bmp2fx/fx mice (BMP2-cKO) were generated and exhibited decreased bone density and lower osteoblast number (n > 6). In vitro experiments showed that BMP2-cKO mouse bone marrow stromal cells (mBMSCs) had an impact on osteoblast differentiation and deficient cell proliferation. Osteogenic medium induced mBMSCs from BMP2-cKO mice and control were subjected to RNA-seq and ATAC-seq analysis to reveal differentially expressed TFs, along with their target open chromatin regions. Combined with H3K27Ac CUT&Tag during osteoblast differentiation, we identified 2338 BMP2-dependent osteoblast-specific active enhancers. Motif enrichment assay revealed that over 80% of these elements were directly targeted by RUNX2, DLX5, MEF2C, OASIS, and KLF4. We deactivated Klf4 in the Sp7 + lineage to validate the role of KLF4 in osteoblast differentiation of mBMSCs. Compared to the wild-type, Sp7-Cre; Klf4fx/+ mice (KLF4-Het) were smaller in size and had abnormal incisors resembling BMP2-cKO mice. Additionally, KLF4-Het mice had fewer osteoblasts and decreased osteogenic ability. RNA-seq and ATAC-seq revealed that KLF4 mainly "co-bound" with RUNX2 to regulate downstream genes. Given the significant overlap between KLF4- and BMP2-dependent NFRs and enriched motifs, our findings outline a comprehensive BMP2-dependent gene regulatory network specifically governing osteoblast differentiation of the Sp7 + lineage, in which Klf4 is a novel transcription factor.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Fatores de Transcrição Kruppel-Like/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos Knockout , Osteocalcina/genética , Osteocalcina/metabolismo , RNA-Seq , Transdução de Sinais , Transcriptoma
10.
Stem Cells ; 39(2): 196-209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159702

RESUMO

Mouse dental papilla cells (mDPCs) derive from cranial neural crest cells and maintain mesenchymal stem cell characteristics. The differentiation of neural crest cells into odontoblasts is orchestrated by transcription factors regulating the expression of genes whose enhancers are initially inaccessible. However, the identity of the transcription factors driving the emergence of odontoblast lineages remains elusive. In this study, we identified SALL1, a transcription factor that was particularly expressed in preodontoblasts, polarizing odontoblasts, and secretory odontoblasts in vivo. Knockdown of Sall1 in mDPCs inhibited their odontoblastic differentiation. In order to identify the regulatory network of Sall1, RNA sequencing and an assay for transposase-accessible chromatin with high-throughput sequencing were performed to analyze the genome-wide direct regulatory targets of SALL1. We found that inhibition of Sall1 expression could decrease the accessibility of some chromatin regions associated with odontoblast lineages at embryonic day 16.5, whereas these regions remained unaffected at postnatal day 0.5, suggesting that SALL1 regulates the fate of mDPCs by remodeling open chromatin regions at the early bell stage. Specifically, we found that SALL1 could directly increase the accessibility of cis-regulatory elements near Tgf-ß2 and within the Runx2 locus. Moreover, coimmunoprecipitation and proximal ligation assays showed that SALL1 could establish functional interactions with RUNX2. Taken together, our results demonstrated that SALL1 positively regulates the commitment of odontoblast lineages by interacting with RUNX2 and directly activating Tgf-ß2 at an early stage.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Cromatina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Odontoblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células HEK293 , Humanos , Camundongos , Ligação Proteica/fisiologia , Fatores de Transcrição/genética
11.
Cells ; 9(9)2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927921

RESUMO

Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts.


Assuntos
Remodelação Óssea , Osso e Ossos , Osteoblastos/citologia , Osteoclastos/citologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Comunicação Celular , Diferenciação Celular , Homeostase , Humanos , Osteoclastos/metabolismo , Transdução de Sinais
12.
Theranostics ; 9(13): 3780-3797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281513

RESUMO

MicroRNAs (miRNAs) are the most abundant RNA species found in serum, and recently, several miRNAs have been found to be associated with osteoporosis. However, the development of such associated miRNAs into diagnostic and therapeutic targets remains unaddressed, mostly because of a lack of functional validation. Here, we identified circulating miR-338 associated with postmenopausal osteoporosis, and performed functional validation in vivo and in vitro. Methods: We collected the serum from postmenopausal osteoporosis patients (N=15) and female volunteers of the same age but with normal bone density (N=15) and examined the enrichment of miR-338 cluster. We also confirmed such enrichment using mice subjected to ovariectomy at different stages. We employed primary bone marrow stromal cells from mice and the MC-3T3 cell line along with CRISPR, RNA-seq and ChIP-qPCR to validate the biological function of secreted miR-338 cluster on osteoblastic differentiation and their upstream regulators. Moreover, we generated miR-338 knockout mice and OVX mice injected with an inhibitor against miR-338 cluster to confirm its biological function in vivo. Results: We observed a significant enrichment of miR-338 cluster in postmenopausal osteoporosis patients. Such enrichment was also prominent in serum from mice subjected to ovariectomy and was detected much earlier than bone density decreases revealed by micro-CT. We also confirmed the presence of an estrogen-dependent Runx2/Sox4/miR-338 positive feedback loop that modulated osteoblast differentiation, providing a possible explanation for our clinical findings. Moreover, deletion of the miR-338 cluster or direct intravenous injection of an miR-338 cluster inhibitor significantly prevented osteoporosis after ovariectomy. Conclusion: Circulating miR-338 cluster in the serum could serve as a promising diagnostic and therapeutic target for postmenopausal osteoporosis patients.


Assuntos
Diferenciação Celular/genética , MicroRNAs/sangue , Terapia de Alvo Molecular , Osteoblastos/patologia , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/genética , Idoso , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Regulação para Baixo/genética , Estrogênios/farmacologia , Retroalimentação Fisiológica , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/diagnóstico , Osteoporose Pós-Menopausa/terapia , Ovariectomia , Fatores de Transcrição SOXC/metabolismo
13.
J Cell Physiol ; 233(9): 7292-7304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663385

RESUMO

Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is essential for the formation of reparative dentin after dental caries or injury. Our previous studies have demonstrated that krüppel-like factor 4 (KLF4) is a critical transcription factor that promotes the odontoblastic differentiation of hDPSCs. Analysis of the microRNA binding sites within the 3'-UTR of KLF4 revealed that QKI, an RNA-binding protein, shared the most microRNAs with KLF4, presumably served as a "competent endogenous RNA (ceRNA)" with KLF4. Thus, we hypothesized QKI could also promote odontoblastic differentiation. In this study, we found QKI was up-regulated during mouse odontoblast differentiation in vivo and hDPSCs odontoblastic differentiation in vitro. Overexpression or knockdown of QKI in hDPSCs led to the increase or decrease of odontoblast marker genes' expressions, indicating its positive role in odontoblastic differentiation. We further validated that QKI served as a key ceRNA of KLF4 via interaction of the shared miRNAs in hDPSCs. Last, we found that, as an RNA binding protein, QKI protein could bind to, and stabilize dentin sialophosphoprotein (DSPP) mRNA, resulting in the augmented accumulation of DSP protein. Taken together, our study indicates that QKI promotes the odontoblastic differentiation of hDPSCs by acting as a ceRNA of KLF4 and as a binding protein of DSPP mRNA to stabilize its level. These two mechanisms of QKI will together positively regulate the downstream pathways and hence potentiate odontoblastic differentiation.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Odontoblastos/citologia , Odontoblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Incisivo/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , MicroRNAs/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Regulação para Cima/genética , Adulto Jovem
14.
Biochem Biophys Res Commun ; 495(1): 493-498, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127007

RESUMO

Illumination of the molecular mechanisms regulating odontoblastic differentiation of dental papilla cells is of great significance for proper dentinogenesis and dental pulp regeneration. In this study, we discovered that microRNA (miR)-3065-5p is up-regulated during odontoblastic differentiation. Overexpression of miR-3065-5p promoted odontoblastic differentiation in vitro. Dual luciferase report assay verified that miR-3065-5p could bind to the 3'UTR of bone morphogenetic protein receptor type II (BMPR2), which dramatically increased in the beginning of odontoblastic differentiation but decreased in the terminal differentiation stage. Inhibition of Bmpr2 in the early stage retarded odontoblastic differentiation while knockdown of Bmpr2 in the terminal stage enhanced odontoblastic differentiation, resembling the effect of miR-3065-5p. Taken together, our present study suggests that miR-3065-5p positively regulates odontoblastic differentiation by directly binding to Bmpr2 in the terminal differentiation stage.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Odontoblastos/citologia , Regiões 3' não Traduzidas , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular , Linhagem Celular , Camundongos , MicroRNAs/metabolismo , Odontoblastos/metabolismo , RNA Mensageiro/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...