Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38664060

RESUMO

BACKGROUND AND HYPOTHESIS: Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into a osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS: We employed transcriptomic analysis of human data and an animal reporter system to pinpoint FHL2 as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2 null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS: Among all the potential RUNX2 cofactor, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION: These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.

2.
Mol Oral Microbiol ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311876

RESUMO

Orthotopic allograft transplantation (OAT) is a significant approach to addressing organ failure. However, persistent immune responses to the allograft affect chronic rejection, which induces OAT vasculopathy (OATV) and organ failure. Porphyromonas gingivalis can infiltrate remote organs via the bloodstream, thereby intensifying the severity of cardiovascular, respiratory, and neurodegenerative diseases and cancer. GroEL, a virulence factor of P. gingivalis promotes pro-inflammatory cytokine production in host cells, which assumes to play a pivotal role in the pathogenesis of cardiovascular diseases. Although the aggravation of OATV is attributable to numerous factors, the role of GroEL remains ambiguous. Therefore, this study aimed to investigate the impact of GroEL on OATV. Aortic grafts extracted from PVG/Seac rats were transplanted into ACI/NKyo rats and in vitro human endothelial progenitor cell (EPC) and coronary artery endothelial cell (HCAEC) models. The experimental findings revealed that GroEL exacerbates OATV in ACI/NKyo rats by affecting EPC and smooth muscle progenitor cell (SMPC) function and enabling the anomalous accumulation of collagen. In vitro, GroEL spurs endothelial-mesenchymal transition in EPCs, reduces HCAEC tube formation and barrier function by downregulating junction proteins, accelerates HCAEC aging by lowering mitochondrial membrane potential and respiratory function, and impedes HCAEC migration by modulating cytoskeleton-associated molecules. This study suggests that P. gingivalis GroEL could potentially augment OATV by impacting vascular progenitor and endothelial cell functions.

3.
Mol Oral Microbiol ; 39(2): 47-61, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37188376

RESUMO

We found that GroEL in Porphyromonas gingivalis accelerated tumor growth and increased mortality in tumor-bearing mice; GroEL promoted proangiogenic function, which may be the reason for promoting tumor growth. To understand the regulatory mechanisms by which GroEL increases the proangiogenic function of endothelial progenitor cells (EPCs), we explored in this study. In EPCs, MTT assay, wound-healing assay, and tube formation assay were performed to analyze its activity. Western blot and immunoprecipitation were used to study the protein expression along with next-generation sequencing for miRNA expression. Finally, a murine tumorigenesis animal model was used to confirm the results of in vitro. The results indicated that thrombomodulin (TM) direct interacts with PI3 K/Akt to inhibit the activation of signaling pathways. When the expression of TM is decreased by GroEL stimulation, molecules in the PI3 K/Akt signaling axis are released and activated, resulting in increased migration and tube formation of EPCs. In addition, GroEL inhibits TM mRNA expression by activating miR-1248, miR-1291, and miR-5701. Losing the functions of miR-1248, miR-1291, and miR-5701 can effectively alleviate the GroEL-induced decrease in TM protein levels and inhibit the proangiogenic abilities of EPCs. These results were also confirmed in animal experiments. In conclusion, the intracellular domain of the TM of EPCs plays a negative regulatory role in the proangiogenic capabilities of EPCs, mainly through direct interaction between TM and PI3 K/Akt to inhibit the activation of signaling pathways. The effects of GroEL on tumor growth can be reduced by inhibiting the proangiogenic properties of EPCs through the inhibition of the expression of specific miRNAs.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Neoplasias , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Porphyromonas gingivalis/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Fisiológica/fisiologia
4.
Cell Cycle ; 22(21-22): 2409-2423, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38129288

RESUMO

Chronic kidney disease (CKD) patients have a high risk of cardiovascular disease. Indoxyl sulfate (IS) is a uremic toxin that has been shown to inhibit nitric oxide production and cause cell senescence by inducing oxidative stress. High-density lipoprotein (HDL) has a protective effect on the cardiovascular system; however, its impacts on IS-damaged endothelial cells are still unknown. This study aimed to explore the effects of exogenous supplement of HDL on vascular endothelial cells in a uremia-mimic environment. Tube formation, migration, adhesion, and senescence assays were used to evaluate the cell function of human aortic endothelial cells (HAECs). Reactive oxygen species generation was measured by using Amplex red assay. L-NAME and MCI186 were used as a nitric oxide synthase inhibitor and a free radical scavenger, respectively. HDL exerted anti-inflammatory and antioxidant effects via HIF-1α/HO-1 activation and IL-1ß/TNF-α/IL-6 inhibition in IS-stimulated HAECs. HDL improved angiogenesis ability through upregulating Akt/eNOS/VEGF/SDF-1 in IS-stimulated HAECs. HDL decreased endothelial adhesiveness via downregulating VCAM-1 and ICAM-1 in IS-stimulated HAECs. Furthermore, HDL reduced cellular senescence via upregulating SIRT1 and downregulating p53 in IS-stimulated HAECs. Importantly, the above beneficial effects of HDL were mainly due to its antioxidant ability. In conclusion, HDL exerted a comprehensive protective effect on vascular endothelial cells against damage from IS through its antioxidant ability. The results of this study might provide a theoretical basis for potential HDL supplementation in CKD patients with endothelial damage.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Indicã/farmacologia , Células Endoteliais/metabolismo , Insuficiência Renal Crônica/metabolismo
5.
J Hazard Mater ; 460: 132436, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699264

RESUMO

Absorption and desorption rates were generally dependent on the concentration gradient from bulk to absorbents. A novel methodology based on a capacitor with an alternating electric field (AEF) is developed to accelerate the absorption and desorption rates with the frequency manipulation. Ferrous polystyrene microspheres (PISMs) are synthesized as absorbents, which could enhance the complex permittivities as well as dielectric properties. Theoretically, the attractive force and viscous force predominately determine the particle and micelles movement in the medium under an AEF. Oil-emulsified micelles (OEM) with various viscosities were selected as absorbates. Both the OEM and microspherical absorbents assembled through the external attractive force in the presence of the AEF. When the attractive force is equal to viscous force in the medium at the characteristic frequency, the optimal absorption rate could be obtained. The absorption rate constants of pseudo-first-order for OEMs under the polarization at 50 V and 120 kHz of frequency are ca. 10 times higher than that in absence of the polarization. The desorption rate as well as recycling efficiency could be also improved at 800 kHz. The ferrous PISMs with high complex permittivity prevented the damage from the AEF, which could be recycled 10 times of absorption and desorption with frequency manipulation under the AEF. Our methodology provides novel insights for ultrafast wastewater treatment.

6.
Biomedicines ; 11(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239085

RESUMO

Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.

7.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108160

RESUMO

Tumor necrosis factor superfamily 14 (TNFSF14) is also known as the LT-related inducible ligand (LIGHT). It can bind to the herpesvirus invasion mediator and lymphotoxin-ß receptor to perform its biological activity. LIGHT has multiple physiological functions, including strengthening the synthesis of nitric oxide, reactive oxygen species, and cytokines. LIGHT also stimulates angiogenesis in tumors and induces the synthesis of high endothelial venules; degrades the extracellular matrix in thoracic aortic dissection, and induces the expression of interleukin-8, cyclooxygenase-2, and cell adhesion molecules in endothelial cells. While LIGHT induces tissue inflammation, its effects on angiogenesis after tissue ischemia are unclear. Thus, we analyzed these effects in the current study. In this study, the animal model of hind limb ischemia surgery in C57BL/6 mice was performed. Doppler ultrasound, immunohistochemical staining, and Western blotting were employed to analyze the situation of angiogenesis. In addition, human endothelial progenitor cells (EPCs) were used for in vitro studies to analyze the possible mechanisms. The results in the animal study showed that LIGHT injection inhibited angiogenesis in ischemic limbs. For the in vitro studies, LIGHT inhibited the expression of integrins and E-selectin; decreased migration and tube formation capabilities, mitochondrial respiration, and succinate dehydrogenase activity; and promoted senescence in EPCs. Western blotting revealed that the impairment of EPC function by LIGHT may be due to its effects on the proper functioning of the intracellular Akt signaling pathway, endothelial nitrite oxide synthase (eNOS), and mitochondrial respiration. In conclusion, LIGHT inhibits angiogenesis after tissue ischemia. This may be related to the clamped EPC function.


Assuntos
Células Progenitoras Endoteliais , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Humanos , Camundongos , Movimento Celular , Células Progenitoras Endoteliais/metabolismo , Isquemia/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
8.
Biomater Sci ; 11(7): 2566-2580, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36789647

RESUMO

Currently, many techniques are used for decellularization of grafts, including physical, enzymatic, and chemical treatments. Indeed, decellularized xenogenic grafts provide superior outcomes than alternative synthetic conduits. However, vascular grafts produced by these methods are not perfect; their defects include defective vessel wall structures, detergent residues, and the development of aneurysms after grafting. Therefore, it is essential to develop a more appropriate process to produce decellularized vascular grafts. Supercritical carbon dioxide (ScCO2) has been used in decellularization technologies in recent years. It is beneficial for the long-term preservation of tissues and regeneration of new vessels. We have previously reported that ScCO2-produced acellular porcine corneas show excellent biocompatibility following lamellar corneal transplantation in rabbits. In this study, we wanted to use this method to fabricate vascular grafts (ScCO2-decellularized rabbit femoral artery (DFA)) and analyze their efficacy, parameters regarding rejection by the recipient's (ACI/NKyo rats) immune system and biocompatibility, structural regeneration, and functionality in vivo. The results indicated that the ScCO2-DFA showed higher biocompatibility, enhanced chemotactic migration of endothelial progenitor cells, lower risk of vasculopathy, lower inflammatory and splenic immune responses, and better physiological-like tension responses after xenotransplantation (XTP) in ACI/NKyo rats compared with the results obtained after XTP using detergent decellularized vascular grafts (SDS-DFA). In conclusion, ScCO2 is an excellent decellularization technique in the fabrication of biocompatible vascular grafts and has tremendous application in vascular regenerative medicine.


Assuntos
Dióxido de Carbono , Detergentes , Ratos , Suínos , Animais , Coelhos , Transplante Heterólogo , Detergentes/análise , Ratos Endogâmicos ACI , Artérias , Regeneração , Engenharia Tecidual/métodos , Matriz Extracelular/química
9.
Anal Chem ; 95(2): 986-993, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580404

RESUMO

The performance of an electrochemiluminescence (ECL) immunosensor was improved with a particle gradient. SiO2-coated magnetic beads were adopted as nanocarriers for gradient manipulation and immobilized with the primary antibody. Cadmium telluride quantum dots were coated with a layer of protein G for conjugation and orientation of the secondary antibody as signal labels. ECL immunosensor gradients on the electrode were formed by magnetolithography (ML) with magnetized nickel masks of column and stripe arrays. The immunosensor generally aggregated as an island on the substrate, leading to a decrease of efficiency in the characteristic signals. Stripe arrays of magnetized nickel were designed to generate cylindrical magnetic flux on the substrate to improve the particle manipulation with the gradient. Various gradients of the sandwich-structured immunosensor substantially affected the electrochemical performance. Compared to the gradient-free immunosensor, the gradient of the immunosensor generated by ML using a 3 µm stripe array mask enhanced the ECL intensity ∼2.2 times. The results of quantification of epithelial cell adhesion molecules (EpCAM) with the gradient immunosensor showed a broad linear range (15-420 pg mL-1), a low limit of detection (5.5 pg mL-1), and high reliability for EpCAM-spiked serum samples, indicating that the immunosensor gradient substantially enhances the performance of the ECL assay.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Biomarcadores Tumorais , Molécula de Adesão da Célula Epitelial , Técnicas Biossensoriais/métodos , Dióxido de Silício/química , Reprodutibilidade dos Testes , Níquel , Imunoensaio/métodos , Anticorpos , Medições Luminescentes/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química
10.
Medicine (Baltimore) ; 101(39): e30835, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181113

RESUMO

While arteriovenous fistula (AVF) nonmaturation is a major issue of hemodialysis care, an effective treatment to improve AVF maturation remains lacking. AVF introduces pulsatile arterial blood flow into its venous limb and produces high luminal pressure gradient, which may have adverse effect on vascular remodeling. As such, the aim of the present study is to investigate effect of luminal pressure gradient on AVF nonmaturation. This single-center, prospective observational study includes patients receiving autologous AVF creation. Participants received early postoperative ultrasound 5-7 days after surgery to collect parameters including diameters, flow rates, and volume at inflow and outflow sites. Luminal pressure gradient was estimated by using modified Bernoulli equation. The outcome was spontaneous AVF maturation within 8 weeks after surgery without intervention. Thirty patients were included, of which the mean age was 66.9 years and 70% were male. At the end of study, 13 (43.3%) patients had spontaneous AVF maturation. All demographic and laboratory characteristics were similar between patients with mature and nonmature AVF. Regarding ultrasonographic parameters, nonmature AVF showed significantly higher inflow/outflow diameter ratio, inflow velocity, and luminal pressure gradient. While these 3 parameters were significantly correlated, multivariate logistic regression showed their significant association with AVF nonmaturation. Receiver operating characteristic curve exhibited their high predictive value for AVF nonmaturation. Our findings showed that higher inflow/outflow ratio, inflow velocity, and AVF luminal pressure gradient in early postoperative ultrasound predicted risk of AVF nonmaturation. Reducing inflow/outflow diameter ratio or inflow rate may be an approach to improve AVF maturation. The predictive value of this early assessment might have impact on the clinical practice of AVF care.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Idoso , Fístula Arteriovenosa/etiologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Feminino , Humanos , Masculino , Estudos Prospectivos , Diálise Renal , Resultado do Tratamento , Grau de Desobstrução Vascular , Veias/diagnóstico por imagem
11.
J Am Heart Assoc ; 11(14): e025208, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861835

RESUMO

Background Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease. Corin converts proatrial natriuretic peptide into its active form after being activated by PCSK6 (proprotein convertase subtilisin/kexin type 6) protease. It remains unknown whether the PCSK6/corin/atrial natriuretic peptide pathway plays a role in CKD-induced cardiomyopathy. Methods and Results Serum corin, left ventricular mass index, and corin-left ventricular mass index correlation were compared between outpatients with versus without CKD. Cardiac corin expression and activity as well as serum corin were compared between 5/6 nephrectomy CKD animal models and sham controls. The effects of indoxyl sulfate, a uremic toxin, on cardiomyocytes were examined in vitro in H9c2 cells. A total of 543 patients were enrolled in this study. Serum corin levels were elevated in patients with CKD compared with levels in patients without CKD. Serum corin levels correlated negatively with left ventricular mass index in participants without CKD, but not in patients with CKD. Compared with sham controls, CKD mice had higher serum corin levels and increased cardiac expression of corin but reduced cardiac corin conversion activity. Indoxyl sulfate stimulated corin expression while suppressing serine protease activity in H9c2 cardiomyoblasts. Lower PCSK6 expression in CKD mouse hearts and indoxyl sulfate-treated H9c2 cardiomyoblasts may explain, at least partly, the observed CKD-associated reduction in corin activity. Conclusions In CKD, cardiac and serum levels of corin are increased, yet corin activity is suppressed. The latter may be attributable to reduced PCSK6 expression. These findings suggest that corin dysfunction may play a significant role in the pathogenesis of CKD-associated cardiomyopathy.


Assuntos
Insuficiência Renal Crônica , Serina Endopeptidases , Animais , Linhagem Celular , Humanos , Indicã/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Peptídeos Natriuréticos , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Vasodilatadores
12.
Biomedicines ; 10(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35625826

RESUMO

Orthotopic allograft transplantation (OAT) is a major strategy for solid heart and kidney failure. However, the recipient's immunity-induced chronic rejection induces OAT vasculopathy that results in donor organ failure. With the exception of immunosuppressive agents, there are currently no specific means to inhibit the occurrence of OAT vasculopathy. On the other hand, far-infrared (FIR) therapy uses low-power electromagnetic waves given by FIR, with a wavelength of 3-25 µm, to improve human physiological functions. Previous studies have shown that FIR therapy can effectively inhibit inflammation. It has also been widely used in adjuvant therapy for various clinical diseases, especially cardiovascular diseases, in recent years. Thus, we used this study to explore the feasibility of FIR in preventing OAT vasculopathy. In this study, the model of transplantation of an aorta graft from PVG/Seac rat to ACI/NKyo rat, and in vitro model of human endothelial progenitor cells (EPCs) was used. In this report, we presented that FIR therapy decreased the serious of vasculopathy in OAT-recipient ACI/NKyo rats via inhibiting proliferation of smooth muscle cells, accumulation of collagen, and infiltration of fibroblast in the vessel wall; humoral and cell-mediated immune responses were decreased in the spleen. The production of inflammatory proteins/cytokines also decreased in the plasma. Additionally, FIR therapy presented higher mobilization and circulating EPC levels associated with vessel repair in OAT-recipient ACI/NKyo rats. In vitro studies demonstrated that the underlying mechanisms of FIR therapy inhibiting OAT vasculopathy may be associated with the inhibition of the Smad2-Slug axis endothelial mesenchymal transition (EndoMT). Thus, FIR therapy may be the strategy to prevent chronic rejection-induced vasculopathy.

13.
Mol Med ; 28(1): 7, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062862

RESUMO

BACKGROUND: Arteriovenous fistula (AVF) is the most important vascular access for hemodialysis; however, preventive treatment to maintain the patency of AVFs has not been developed. In endothelium, ß-catenin functions in both the intercellular adherens complex and signaling pathways that induce the transition of endothelial cells to myofibroblasts in response to mechanical stimuli. We hypothesize that mechanical disturbances in the AVF activate ß-catenin signaling leading to the transition of endothelial cells to myofibroblasts, which cause AVF thickening. The present study aimed to test this hypothesis. METHODS: Chronic kidney disease in mice was induced by a 0.2% adenine diet. AVFs were created by aortocaval puncture. Human umbilical vein endothelial cells (HUVECs) were used in the cell experiments. A pressure-culture system was used to simulate mechanical disturbances of the AVF. RESULTS: Co-expression of CD31 and smooth muscle alpha-actin (αSMA), loss of cell-cell adhesions, and the expression of the myofibroblast marker, integrin subunit ß6 (ITGB6), indicated transition to myofibroblasts in mouse AVF. Nuclear translocation of ß-catenin, decreased axin2, and increased c-myc expression were also observed in the AVF, indicating activated ß-catenin signaling. To confirm that ß-catenin signaling contributes to AVF lesions, ß-catenin signaling was inhibited with pyrvinium pamoate; ß-catenin inhibition significantly attenuated AVF thickening and decreased myofibroblasts. In HUVECs, barometric pressure-induced nuclear localization of ß-catenin and increased expression of the myofibroblast markers, αSMA and ITGB6. These changes were attenuated via pretreatment with ß-catenin inhibition. CONCLUSIONS: The results of this study indicate that mechanical disturbance in AVF activates ß-catenin signaling to induce the transition of endothelial cells to myofibroblasts. This signaling cascade can be targeted to maintain AVF patency.


Assuntos
Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Fístula Arteriovenosa/etiologia , Biomarcadores , Suscetibilidade a Doenças , Células Endoteliais , Humanos , Camundongos
14.
PLoS One ; 16(12): e0260887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855889

RESUMO

Previous studies have shown an increase of insulin-like growth factor-2 (IGF2) in animal models of neuropathic pain. We aimed to examine the hypothesis that reducing the expression of IGF2 using intrathecal IGF2 small-interfering RNA (siRNA) would attenuate the development of neuropathic pain in rats after spared nerve injury (SNI). Male Wistar rats were divided into three groups: sham-operated group, in which surgery was performed to cut the muscles without injuring the nerves; SNI group, in which SNI surgery was performed to sever the nerves; and SNI + siRNA IGF2 group, in which SNI surgery was performed, and IGF2-siRNA was administered intrathecally 1 day after SNI. The rats were assessed for mechanical allodynia and cold allodynia 1 day before surgery (baseline), and at 2, 4, 6, 8, and 10 days after siRNA treatment. The rat spinal cord was collected for quantitative polymerase chain reaction and western blot analysis. Compared with the SNI group, rats that received IGF2 siRNA showed a significantly increased SNI-induced paw-withdrawal threshold to metal filament stimulation from Day 4 to Day 10 after SNI surgery. IGF2 siRNA significantly decreased the response duration from the acetone test from Day 2 to Day 10 following SNI surgery. SNI increased IGF2 mRNA expression on Day 2 and increased IGF2 protein expression on Day 8 and Day 10 in the spinal cord of the SNI rats. However, the above-mentioned effects of IGF2 mRNA and protein expression were significantly inhibited in the SNI + IGF2 siRNA group. We demonstrated that intrathecal administration of IGF2 siRNA provided significant inhibition of SNI-induced neuropathic pain via inhibition of IGF2 expression in the spinal cord. The analgesic effect lasted for 10 days. Further exploration of intrathecal IGF2 siRNA administration as a potential therapeutic strategy for neuropathic pain is warranted.


Assuntos
Modelos Animais de Doenças , Hiperalgesia/terapia , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/complicações , RNA Interferente Pequeno/administração & dosagem , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Injeções Espinhais , Fator de Crescimento Insulin-Like II/genética , Masculino , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/patologia , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar
15.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769297

RESUMO

Pulsed radiofrequency (PRF) works by delivering short bursts of radiofrequency to a target nerve, thereby affecting nerve signal transduction to reduce pain. Although preliminary clinical investigations have shown that PRF treatment can be used safely as an alternative interventional treatment in patients with refractory pain conditions, unexpected damage to a normal nerve/ganglion is still one of the possible complications of using the PRF strategy. Noxious pain may also be triggered if PRF treatment accidentally damages an intact nerve. However, few studies in the literature have described the intracellular modifications that occur in neuronal cells after PRF stimulation. Therefore, in this study, we evaluated the effects of PRF on unimpaired nerve function and investigated the potential mechanisms of PRF-induced pain. Wistar rats were stimulated with 30-60 V of PRF for 6 min, and mechanical allodynia, cold hypersensitivity, cytokine and matrix metalloproteinase (MMP) production, and mitogen-activated protein kinase activity (p38 MAPK, ERK1/2, JNK/SAPK) were analyzed. The results indicated that PRF stimulation induced a significant algesic effect and nociceptive response. In addition, the protein array and Western blotting analyses showed that the clinical application of 60 V of PRF can induce the activation of MAPKs and the production of inflammatory cytokines and MMPs in the lumbar dorsal horn, which is necessary for nerve inflammation, and it can be suppressed by MAPK antagonist treatment. These results indicate that PRF stimulation may induce inflammation of the intact nerve, which in turn causes inflammatory pain. This conclusion can also serve as a reminder for PRF treatment of refractory pain.


Assuntos
Síndromes Periódicas Associadas à Criopirina/terapia , Gânglios Espinais/imunologia , Hiperalgesia/terapia , Tratamento por Radiofrequência Pulsada/efeitos adversos , Medula Espinal/imunologia , Animais , Síndromes Periódicas Associadas à Criopirina/etiologia , Síndromes Periódicas Associadas à Criopirina/metabolismo , Citocinas/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Dor , Distribuição Aleatória , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680582

RESUMO

The accumulation of unknown polymorphic composites in the endocardium damages the endocardial endothelium (EE). However, the composition and role of unknown polymorphic composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite deposition during endocardium damage and HF progression. Adult male Sprague-Dawley rats were divided into two HF groups-angiotensin II-induced HF and left anterior descending artery ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements in deposits were examined. HF progression reduced the expression of CD31 in the endocardium, impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocardial surface showed the accumulation of unknown polymorphic composites. In the animal HF model, especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N in the deposited composites were significantly higher than those of the other groups. The deposited composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was significantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT was accompanied by polymorphic composites of different shapes and elemental compositions, which further damage and deteriorate heart function.

17.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681278

RESUMO

In December 2019, the COVID-19 pandemic began to ravage the world quickly, causing unprecedented losses in human life and the economy. A statistical study revealed that the proportion of solid organ transplant (SOT) recipients with severe symptoms and deaths after being infected by SARS-CoV-2 is considerably higher than that of non-SOT recipients, and the prognosis is relatively poor. In addition, the clinical manifestation of SOT recipients suffering from COVID-19 is different from that of general COVID-19 patients. Acute kidney injury (AKI) is a common complication in COVID-19 patients, and it is likely more common among SOT recipients infected with SARS-CoV-2. Clinical experts consider that SOT recipients have long-term treatment with immunosuppressants, and the comorbidities are driven by a high rate of severe symptoms and mortality. Orthotopic kidney allograft transplantation is an effective treatment for patients suffering from end-stage kidney disease/kidney failure through which they can easily extend their life. Indeed, kidney transplant recipients have suffered significant damage during this pandemic. To effectively reduce the severity of symptoms and mortality of kidney transplant recipients suffering from COVID-19, precise application of various drugs, particularly immunosuppressants, is necessary. Therefore, herein, we will collate the current clinical experience of treating COVID-19 infection in kidney transplant recipients and discuss the adjustment of patients using immunosuppressive agents in the face of COVID-19.

18.
J Chin Med Assoc ; 84(12): 1084-1091, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561408

RESUMO

BACKGROUND: Statins, beta-blockers, and angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers have been advocated by guidelines as secondary prevention medications to improve the long-term outcomes of post-acute myocardial infarction (AMI) patients. However, adequate drug adherence has always been challenging, and different treatment regimens may lead to divergent outcomes that remain unclear under current myocardial infarction (MI) care standards. This study investigated the association between use of different preventive regimens post-AMI and patients' long-term outcomes. METHODS: This cohort study used data files from the Taiwan National Health Insurance Research Database. A total of 77 520 people who were hospitalized with AMI between 2002 and 2015 were assessed. On the basis of medication possession ratio (MPR) to individual medications, eight treatment groups were examined in this study. Receiving therapy was defined as MPR ≥40%. We investigated the association between different treatment groups and all-cause mortality in 24 months. RESULTS: Overall, 51 322 patients with ST-elevation MI and 26 198 with non-ST-elevation MI were included in the study. Patients received all three preventive medications show the lowest mortality in 24 months follow-up periods among all treatment groups. Patients who did not usage of any of these three preventive medications had the highest mortality in 24 months (adjusted hazard ratio, 1.78; 95% CI, 1.64-1.93). This mortality rate had the same pattern across the three cohort generations (2002-2005, 2006-2010, and 2011-2015). CONCLUSION: In this large population-based real-world study, usage of three preventive therapies post-MI was associated with the lowest rate of all-cause mortality.


Assuntos
Doença Aguda , Quimioterapia Combinada , Infarto do Miocárdio/prevenção & controle , Alta do Paciente , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taiwan , Adulto Jovem
19.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069162

RESUMO

Therapeutic elevation of high-density lipoprotein (HDL) is thought to minimize atherogenesis in subjects with dyslipidemia. However, this is not the case in clinical practice. The function of HDL is not determined by its concentration in the plasma but by its specific structural components. We previously identified an index for the prediction of HDL functionality, relative HDL (rHDL) index, and preliminarily explored that dysfunctional HDL (rHDL index value > 2) failed to rescue the damage to endothelial progenitor cells (EPCs). To confirm the effectiveness of the rHDL index for predicting HDL functions, here we evaluated the effects of HDL from patients with different rHDL index values on the endothelial-mesenchymal transition (EndoMT) of EPCs. We also analyzed the lipid species in HDL with different rHDL index values and investigated the structural differences that affect HDL functions. The results indicate that HDL from healthy adults and subjects with an rHDL index value < 2 protected transforming growth factor (TGF)-ß1-stimulated EndoMT by modulating Smad2/3 and Snail activation. HDL from subjects with an rHDL index value > 2 failed to restore the functionality of TGF-ß1-treated EPCs. Lipidomic analysis demonstrated that HDL with different rHDL index values may differ in the composition of triglycerides, phosphatidylcholine, and phosphatidylinositol. In conclusion, we confirmed the applicability of the rHDL index value to predict HDL function and found structural differences that may affect the function of HDL, which warrants further in-depth studies.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Idoso , Dislipidemias/sangue , Células Progenitoras Endoteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipoproteínas HDL/farmacologia , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Fosfatidilcolinas/química , Fosfatidilinositóis/sangue , Fosfatidilinositóis/química , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Triglicerídeos/sangue , Triglicerídeos/química , Adulto Jovem
20.
Polymers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072966

RESUMO

The plasmon-activated water (PAW) that reduces hydrogen bonds is made of deionized reverse osmosis water (ROW). However, compared with ROW, PAW has a significantly higher diffusion coefficient and electron transfer rate constant in electrochemical reactions. PAW has a boiling point of97 °C and specific heat of0.94; the energy of PAW is also 1121 J/mol higher than ordinary water. The greater the force of hydrogen bonds between H2O, the larger the volume of the H2O cluster, and the easier it is to lose the original characteristics. The hydrogen bonding force of PAW is weak, so the volume of its cluster is small, and it exists in a state very close to a single H2O. PAW has a high permeability and diffusion rate, which can improve the needs of biological applications and meet the dependence of biological organisms on H2O when performing physiological functions. PAW can successfully remove free radicals, and efficiently reduce lipopolysaccharide (LPS)-induced monocytes to release nitric oxide. PAW can induce expression of the antioxidant gene Nrf2 in human gingival fibroblasts, lower amyloid burden in mice with Alzheimer's disease, and decrease metastasis in mice grafted with Lewis lung carcinoma cells. Because the transferring plasmon effect may improve the abnormality of physiological activity in a biological system, we aimed to evaluate the influence of PAW on orthotopic allograft transplantation (OAT)-induced vasculopathy in this study. Here, we demonstrated that daily intake of PAW lowered the progression of vasculopathy in OAT-recipient ACI/NKyo rats by inhibiting collagen accumulation, proliferation of smooth muscle cells and fibroblasts, and T lymphocyte infiltration in the vessel wall. The results showed reduced T and B lymphocytes, plasma cells, and macrophage activation in the spleen of the OAT-recipient ACI/NKyo rats that were administered PAW. In contrast to the control group, the OAT-recipient ACI/NKyo rats that were administered PAW exhibited higher mobilization and levels of circulating endothelial progenitor cells associated with vessel repair. We use the transferring plasmon effect to adjust and maintain the biochemical properties of water, and to meet the biochemical demand of organisms. Therefore, this study highlights the therapeutic roles of PAW and provides more biomedical applicability for the transferring plasmon effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...