Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014051

RESUMO

The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo
2.
Biosens Bioelectron ; 216: 114608, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961122

RESUMO

Assessing the risks associated with genotoxic compounds is challenging because of their complex genotoxicity and the difficulty in the dynamic monitoring of coexisting hazards. In this paper, DNA-assembly-based multistimulus responsive capsules that can detect multiple genotoxic agents simultaneously are presented. By exploiting the sequence- and reactivity-editable properties of DNA, DNA sequences in a DNA shell are designed to exhibit multivalent susceptibility against ultraviolet B radiation, aflatoxin B1, and styrene oxide. Upon exposure to genotoxicants, the developed DNA capsules dissociate because of the production of DNA adducts or aptamer-ligand complex-activated dehybridization, which results in the release of encapsulated fluorophores for a measure of the genotoxicant level. The fluorophore release kinetics for each genotoxicant is investigated. Moreover, the destruction behaviors of the developed capsules are evaluated in binary and ternary toxin mixtures. Multiple linear regression indicates the existence of a strong relationship between the fluorescent response and the genotoxicant level; the result highlights the significance of particular genotoxicant and the antagonistic effect of interacting genotoxic substances on capsule destruction. This DNA architecture allows the monitoring of human exposure to genotoxic agents, which enables the timely adoption of remedial measures, and benefits development of an endogenous genotoxin-responsive drug delivery system.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Cápsulas , DNA , Adutos de DNA , Preparações de Ação Retardada , Humanos , Ligantes , Mutagênicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...