Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 660: 810-822, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277838

RESUMO

Harnessing accelerated interfacial redox, thus boosting charge separation, is of great importance in photocatalytic solar hydrogen generation. In effect, nanoassembling non-noble metallic phases in CdS-based systems and elucidating their role in photocatalysis hold the key to eventually boosting electron shuttle in the field. Here we combine an efficient in-situ exsoluted metallic Co0 nanoparticles on a carbides matrix (CMG) with CdS (CdS@CoCMG) for photogeneration of hydrogen. The metallic cobalt phase exhibits strong binding at the CdS-carbide dual interfaces, forming the accelerated "electron converter" mechanism validated by charge transfer kinetics and achieving two orders of magnitude faster hydrogen production (44.42 mmol g-1 h-1) relative to CdS (0.43 mmol g-1 h-1). We propose that the unique catalyst configuration enable the directional electron-relay photocatalysis via harnessing interfaces between Co0 phase, carbides, and CdS clusters, which eventually boosts the redox process and charge separation of the integrated system, leading to high H2 production rates in the suspension.

2.
ACS Appl Mater Interfaces ; 12(24): 27268-27276, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32441505

RESUMO

Catalyst deactivation is one of the most important issues in heterogeneous catalysis. Constructing a stable nanoscale structure that maintains efficient activity and prolonged stability under redox conditions for catalysis, particularly hydrogenation reactions, remains attractive albeit the flourishing nanoscience. This work presents a facile route to synthesize a semi-encapsulated transition metal by assembling three-dimensional transition metal silicate nanotubes onto carbon nanotubes (CNTs) as precursors. The obtained materials expose an active surface of the transition metal for efficient catalysis and form a specific structure to inhibit the migration of metal nanoparticles (NPs) by establishing strong metal-support interactions. Cu@SiO2 prepared by common precipitation shows an inferior activity, and its performance is easily attenuated because of the aggregation of Cu NPs. The addition of CNTs as a carrier doubles the intrinsic activity of Cu catalysts. This hybrid catalyst, which consists of Cu species, SiO2, and CNTs, is among the best catalysts for dimethyl oxalate hydrogenation with boosting activity of 25 h-1 and enhanced stability of more than 200 h.

3.
ACS Appl Mater Interfaces ; 11(12): 11317-11326, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30835098

RESUMO

Heterogeneously and uniformly dispersed metal nanoclusters with high thermal stability and stable nonmetallic nature show outstanding catalytic performance. In this work, we report on the role of sulfur moieties in hydrochlorination catalysis over carbon-supported gold (Au/C). A combination of experimental and theoretical analyses shows that the -SO3H and derived -SO2H sulfur species in high oxidation states at the interface between Au and -SO3H at ≥180 °C give rise to high thermal stability and catalytic activity. By contrast, the grafted thiol group (-SH) and the derived low-valence sulfur species on carbon markedly destabilize the Au nanoclusters, promoting their rapid sintering into large Au nanoparticles and leading to the loss of their cationic nature. Theoretical calculations suggest that -SO3H favorably adsorbs and stabilizes cationic Au species. Compared to Au/C and Au-SH/C with the Auα+/Au0 atomic ratios of 1.02 and 0.24, respectively (α = 1 or 3), the activity and durability of acetylene hydrochlorination are remarkably enhanced by the interaction between the -SO3H moieties and cationic Au species that enables the high oxidation state of Au to be effectively retained (Auα+/Au0 = 3.82). These results clearly demonstrate the double-edged sword effect of sulfur moieties on the catalytic Au component in acetylene hydrochlorination. The double-edged sword effect of sulfur species in the stabilization/destabilization of metal nanoclusters is also applicable to other metals such as Ru, Pd, Pt, and Cu. Overall, this study enriches the general understanding of the stabilization of metal clusters and provides insight into a wet chemistry strategy for stabilizing supported ligand-free nanoclusters.

4.
Nanoscale ; 8(11): 5959-67, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26924186

RESUMO

A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may insinuate that interplanar spaces provide available access to the external surface of CNTs. Designed experiments further confirm the importance of herringbone CNTs with higher reaction rate than parallel CNTs, and confined Ag produces considerably more activated hydrogen species, thereby benefiting the reduction of surface copper nanoparticles or DMO molecules during hydrogenation. This paper presents a study of the effective utilization of hydrogen over herringbone CNT confined Ag and an understanding of the confinement and promotional catalytic effects.

5.
Bioresour Technol ; 102(10): 5562-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388804

RESUMO

Several cationic monoether-functionalized ionic liquids (MEF-ILs) with different substituents were synthesized and used as media for kinetic resolution of secondary alcohols catalyzed by several lipases. The results indicate that Novozym 435 (an immobilized Candida antarctica Lipase B) had higher efficiency compared to other lipases in deracemization. The alkyl substituents at the 2- and 3-positions in the imidazolium ring of MEF-ILs were found to contribute to the increased enantioselectivity and enhancement of the reaction rate, respectively, while the higher stereo-hindrance of ether bonds decreased the activity. An enantioselectivity higher than 99% with 50% conversion of rac-1-phenylethanol was achieved using the catalyst system comprised of Novozym 435 and the MEF-IL 1-(3-ethoxypropyl)-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. The catalytic system could be separated and reused without considerable activity loss. MEF-ILs can be a new class of enzyme-benign media suitable for lipase-catalyzed kinetic resolution of secondary alcohols.


Assuntos
Álcoois/metabolismo , Éteres/química , Lipase/metabolismo , Biocatálise , Estabilidade Enzimática , Cinética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA