Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772115

RESUMO

This study aims to extract the energy feature distributions in the form of marginal frequency (MF) and Hilbert spectrum (HS) in the intrinsic mode functions (IMF) domain for actual movement (AM)-based and motor imagery (MI)-based electroencephalogram (EEG) signals using the Hilbert-Huang transformation (HHT) time frequency (TF) analysis method. Accordingly, F5 and F6 EEG signal TF energy feature distributions in delta (0.5-4 Hz) rhythm are explored. We propose IMF-based and residue function (RF)-based MF and HS feature information extraction methods with IMFRFERDD (IMFRF energy refereed distribution density), IMFRFMFERDD (IMFRF MF energy refereed distribution density), and IMFRFHSERDD (IMFRF HS energy refereed distribution density) parameters using HHT with application to AM, MI EEG F5, and F6 signals in delta rhythm. The AM and MI tasks involve simultaneously opening fists and feet, as well as simultaneously closing fists and feet. Eight samples (32 in total) with a time duration of 1000 ms are extracted for analyzing F5AM, F5MI, F6AM, and F6MI EEG signals, which are decomposed into five IMFs and one RF. The maximum average IMFRFERDD values of IMF4 are 3.70, 3.43, 3.65, and 3.69 for F5AM, F5MI, F6 AM, and F6MI, respectively. The maximum average IMFRFMFERDD values of IMF4 in the delta rhythm are 21.50, 20.15, 21.02, and 17.30, for F5AM, F5MI, F6AM, and F6MI, respectively. Additionally, the maximum average IMFRFHSERDD values of IMF4 in delta rhythm are 39,21, 39.14, 36.29, and 33.06 with time intervals of 500-600, 800-900, 800-900, and 500-600 ms, for F5AM, F5MI, F6AM, and F6MI, respectively. The results of this study, advance our understanding of meaningful feature information of F5MM, F5MI, F6MM, and F6MI, enabling the design of MI-based brain-computer interface assistive devices for disabled persons.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Processamento de Sinais Assistido por Computador , Ritmo Delta , Movimento , Eletroencefalografia/métodos
2.
J Mol Model ; 17(10): 2455-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21181216

RESUMO

Molecular dynamics simulations of the biphalin molecule, (Tyr-D-Ala-Gly-Phe-NH)(2), and the active tetrapeptide hydrazide, Tyr-D-Ala-Gly-Phe-NH-NH(2) were performed to investigate the cause of the increased µ and δ receptor binding affinities of the former over the latter. The simulation results demonstrate that the acylation of the two equal tetrapeptide fragments of biphalin produces the constrained hydrazide bridges [Formula: see text] and [Formula: see text], which in turn increase the opportunity of conformations for binding to µ or δ receptors. Meanwhile, the connection of the two active tetrapeptide fragments of biphalin also results in the constrained side chain torsion angle χ(2) at one of the two residues Phe. This constrained side chain torsion angle not only significantly increases the δ receptor binding affinity but also makes most of the δ receptor binding conformations of biphalin bind to the δ receptor through the fragment containing the mentioned residue Phe.


Assuntos
Analgésicos Opioides/química , Encefalinas/química , Simulação de Dinâmica Molecular , Analgésicos Opioides/metabolismo , Encefalinas/metabolismo
3.
J Mol Model ; 13(1): 171-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16972066

RESUMO

The conformational stability of the extended antiparallel dimer structure of Met-enkephalin in water was analyzed by examining the hydration structure of enkephalin using molecular dynamics simulations. The result shows that, despite of the hydrophicility of the terminal atoms in the pentapeptide, the main contributor for the stability of the dimer in water is the four intermolecular hydrogen bonds between the Gly(2) and Phe(4) groups. The three-dimensional model of the delta-opioid pharmacophore for this dimer structure was also established. Such a model was demonstrated to match the delta-opioid pharmacophore query derived from the non-peptides SIOM, TAN-67, and OMI perfectly. This result thus strongly supports the assumption that the dimer structure of Met-enkephalin is a possible delta-receptor binding conformation.


Assuntos
Encefalina Metionina/química , Receptores Opioides delta/química , Água/química , Química Farmacêutica/métodos , Dimerização , Desenho de Fármacos , Ligantes , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Peptídeos/química , Polímeros/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...