Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713838

RESUMO

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.

2.
Nat Commun ; 15(1): 3779, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710684

RESUMO

The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocinese , Proteínas Associadas aos Microtúbulos , Microtúbulos , Arabidopsis/metabolismo , Arabidopsis/genética , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fosforilação , Mutação , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Plantas Geneticamente Modificadas , Mitose
3.
J Hazard Mater ; 471: 134395, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663293

RESUMO

Microplastic (MP) pollution is widely spread in oceans, freshwater, and terrestrial environments but MPs in mountainous headwater ecosystem are rarely reported. This study focuses on the headwater of Yangtze tributaries of the Hindu Kush-Himalayan (HKH) region. Five streams at elevations of 900 to 3300 m were selected to investigate the distribution of MPs in water and sediments across altitudes. MPs were found in all water and sediment samples from top stream zone nearly in absence of anthropogenic activity, low anthropogenic zone, and high anthropogenic zone, increased from 12-54, 81-185 to 334-847 items/L, and 2-35, 26-84 to 124-428 items/kg, respectively. This elevation-dependent MP distribution indicated that as elevation decreased, anthropogenic activities intensified and increased MPs input and their abundance, size, and diversity. Notably, hydraulic projects, such as damming, were identified as potential barriers to the migration of MPs downstream. Microbiome analyses revealed the presence of bacterial genes associated with plastic biodegradation in all sediment samples. The study indicates that Shangri-la mountainous streams have been polluted with MPs for years with potential risk of generation of nano-sized particles via natural fragmentation and biodegradation, and thus raises concern on MPs pollution in headwaters streams in mountainous regions.


Assuntos
Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios/química , Sedimentos Geológicos/química , China , Efeitos Antropogênicos
4.
Proc Natl Acad Sci U S A ; 121(12): e2322677121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466841

RESUMO

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.


Assuntos
Arabidopsis , Cinetocoros , Animais , Cinetocoros/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem do Ciclo Celular , Fuso Acromático/metabolismo
5.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369767

RESUMO

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Assuntos
Glycine max , Indóis , Raízes de Plantas , Estresse Salino , Streptomyces , Glycine max/fisiologia , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Streptomyces/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Indóis/metabolismo , Tolerância ao Sal , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
6.
Plant J ; 118(3): 905-919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251949

RESUMO

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Floema , Proteínas de Transporte de Fosfato , Fosfatos , Folhas de Planta , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fosfatos/metabolismo , Floema/metabolismo , Floema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Mutação , Transcriptoma
7.
Sci Signal ; 17(817): eadf7318, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166030

RESUMO

The opening of the embryonic leaves (cotyledons) as seedlings emerge from the dark soil into the light is crucial to ensure the survival of the plant. Seedlings that sprout in the dark elongate rapidly to reach light but keep their cotyledons closed. During de-etiolation, the transition from dark to light growth, elongation slows and the cotyledons open. Here, we report that the transcription factor ACTIVATING FACTOR1 (ATAF1) participates in de-etiolation and facilitates light-induced cotyledon opening. The transition from dark to light rapidly induced ATAF1 expression and ATAF1 accumulation in cotyledons. Seedlings lacking or overexpressing ATAF1 exhibited reduced or enhanced cotyledon opening, respectively, and transcriptomic analysis indicated that ATAF1 repressed the expression of genes associated with growth and cotyledon closure. The activation of the photoreceptor phytochrome A (phyA) by far-red light induced its association with the ATAF1 promoter and stimulation of ATAF1 expression. The transcription factor ELONGATED HYPOCOTYL5 (HY5), which is also activated in response far-red light, cooperated with phyA to induce ATAF1 expression. ATAF1 and HY5 interacted with one another and cooperatively repressed the expression of growth-promoting and cotyledon closure genes. Together, our study reveals a mechanism through which far-red light promotes cotyledon opening.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Repressoras/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(2): e2316583121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170753

RESUMO

The kinetochore scaffold 1 (KNL1) protein recruits spindle assembly checkpoint (SAC) proteins to ensure accurate chromosome segregation during mitosis. Despite such a conserved function among eukaryotic organisms, its molecular architectures have rapidly evolved so that the functional mode of plant KNL1 is largely unknown. To understand how SAC signaling is regulated at kinetochores, we characterized the function of the KNL1 gene in Arabidopsis thaliana. The KNL1 protein was detected at kinetochores throughout the mitotic cell cycle, and null knl1 mutants were viable and fertile but exhibited severe vegetative and reproductive defects. The mutant cells showed serious impairments of chromosome congression and segregation, that resulted in the formation of micronuclei. In the absence of KNL1, core SAC proteins were no longer detected at the kinetochores, and the SAC was not activated by unattached or misaligned chromosomes. Arabidopsis KNL1 interacted with SAC essential proteins BUB3.3 and BMF3 through specific regions that were not found in known KNL1 proteins of other species, and recruited them independently to kinetochores. Furthermore, we demonstrated that upon ectopic expression, the KNL1 homolog from the dicot tomato was able to functionally substitute KNL1 in A. thaliana, while others from the monocot rice or moss associated with kinetochores but were not functional, as reflected by sequence variations of the kinetochore proteins in different plant lineages. Our results brought insights into understanding the rapid evolution and lineage-specific connection between KNL1 and the SAC signaling molecules.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Cinetocoros/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Segregação de Cromossomos
9.
Plant Commun ; 5(3): 100744, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37946410

RESUMO

Anthocyanins play diverse roles in plant physiology and stress adaptation. In Arabidopsis, the MYB-bHLH-WD40 (MBW) complex has a crucial role in the regulation of anthocyanin synthesis. Here, we report that the R2R3-MYB transcription factor MYB30 and the ubiquitin E3 ligase RHA2b participate in anthocyanin biosynthesis through regulation of the MBW complex. MYB30 was found to negatively regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis seedlings. Expression of multiple genes involved in flavonoid or anthocyanin biosynthesis was affected in the myb30 mutant, and MYB30 directly repressed the expression of MYB75, which encodes a core component of the MBW complex, by binding to its promoter. Moreover, MYB30 physically interacted with MYB75 to inhibit its activity by repressing MBW complex assembly. In addition, sucrose treatment significantly promoted MYB30 degradation via the action of RHA2b. The ubiquitination and degradation of MYB30 were significantly attenuated in the rha2b mutant under high-sucrose treatment, and further analysis showed that MYB75 directly promoted RHA2b expression in response to high sucrose. Our work thus reveals an anthocyanin biosynthetic regulatory module, RHA2b-MYB30, that controls the function of the MBW complex via MYB75. The repression of MYB75 by MYB30 is released by MYB75-induced RHA2b expression, thus ensuring the self-activation of MYB75 when anthocyanin synthesis is needed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Antocianinas , Proteínas de Arabidopsis/metabolismo , Plântula/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/metabolismo
10.
J Genet Genomics ; 51(1): 16-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37647984

RESUMO

Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.


Assuntos
Plantas , Estresse Salino , Plantas/genética , Desenvolvimento Vegetal , Agricultura , Tolerância ao Sal , Solo/química
11.
Cell Rep ; 42(10): 113208, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792531

RESUMO

Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desidratação/metabolismo , Cloroplastos/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia
13.
Plant Cell Physiol ; 64(7): 814-825, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37148388

RESUMO

Floods impose detrimental effects on natural and agro-ecosystems, leading to a significant loss of worldwide crop production. Global climate change has even worsened this situation. Flooding is a continuous process including two stages of submergence and re-oxygenation, and both are harmful to plant growth and development, resulting in a serious decline in crop yield. Therefore, the understanding of plant flooding tolerance and developing flooding-resistant crops are of great significance. Here, we report that the Arabidopsis thaliana (Arabidopsis) R2R3-MYB transcription factor MYB30 participates in plant submergence response through 1-aminocyclopropane-1-carboxylic acid synthase 7 (ACS7) by repressing ethylene (ET) biosynthesis. The MYB30 loss-of-function mutant exhibits reduced submergence tolerance with a higher level of ET production, whereas the MYB30-overexpressing plant displays enhanced submergence tolerance and repressed ET production. The coding gene of ACS7 might be a direct target of MYB30 during the submergence response. MYB30 binds to the promoter of ACS7 and represses its transcription. The ACS7 loss-of-function mutant with defect in ET biosynthesis displays enhanced submergence tolerance, whereas plants overexpressing ACS7 exhibit a submergence-sensitive phenotype. Genetic analysis shows that ACS7 functions downstream of MYB30 in both ET biosynthesis and submergence response. Taken together, our work revealed a novel transcriptional regulation that modulates submergence response in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ecossistema , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Environ Manage ; 338: 117827, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023606

RESUMO

During the initial impoundment of large-deep reservoir, the aquatic environment changed dramatically in various aspects such as water level, hydrological regime, and pollutants, which could alter microorganisms' community structure, break the balance of the aquatic ecosystem and even endanger the aquatic ecosystem. However, the interaction of microbial communities and water environment during the initial impoundment process of a large-deep reservoir remained unclear. To this end, in-situ monitoring and sampling analysis on water quality and microbial communities during the initial impoundment process of a typical large-deep reservoir named Baihetan were conducted so as to explore the response of microbial community structure to the changes of water environmental factors during the initial impoundment of large deep reservoir and reveal the key driving factors affecting microbial community structure. The spatio-temporal variation in water quality was analyzed, and the microbial community structure in the reservoir was investigated based on high-throughput sequencing. The results showed that the COD of each section increased slightly, and the water quality after impoundment was slightly poorer than that before the impoundment. Water temperature and pH were proved to be the key factors affecting the structure of bacterial and eukaryotic communities respectively during the initial impoundment. The research results revealed the role of microorganisms and their interaction with biogeochemical processes in the large-deep reservoir ecosystem, which was crucial for later operation and management of the reservoir and the protection of the reservoir water environment.


Assuntos
Microbiota , Qualidade da Água , Bactérias/genética , China , Monitoramento Ambiental
15.
Plant Cell ; 35(6): 2027-2043, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36890719

RESUMO

The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sumoilação , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ligases/genética , Ligases/metabolismo
16.
J Integr Plant Biol ; 65(6): 1521-1535, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36856341

RESUMO

Anthocyanins are important natural plant pigments and play diverse roles in plant growth and adaptation. Anthocyanins function as screens to protect photosynthetic tissues from photoinhibition. However, the regulatory mechanisms underlying the biosynthesis and spatial accumulation pattern of anthocyanins remain some unresolved issues. Here, we demonstrate that the GARP-type transcription factor GOLDEN2-LIKE 1 (GLK1) functions as a positive factor in anthocyanin accumulation. GLK1 enhances the transcriptional activation activities of MYB75, MYB90, and MYB113 via direct protein-protein interactions to increase the expression of anthocyanin-specific biosynthetic genes. Anthocyanins accumulate in an acropetal manner in Arabidopsis. We also found that the expression pattern of GLK1 overall mimicked the accumulation pattern of anthocyanin from the base of the main stem to the shoot apex. Based on these findings, we established a working model for the role of GLK1 in anthocyanin accumulation and propose that GLK1 mediates the spatial distribution pattern of anthocyanins by affecting the transcriptional activation activities of MYB75, MYB90, and MYB113.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
17.
Mol Plant Pathol ; 24(2): 107-122, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377585

RESUMO

Many host factors of plants are used by viruses to facilitate viral infection. However, little is known about how alpha-momorcharin (αMMC) counters virus-mediated attack strategies in tomato. Our present research revealed that the 2b protein of cucumber mosaic virus (CMV) directly interacted with catalases (CATs) and inhibited their activities. Further analysis revealed that transcription levels of catalase were induced by CMV infection and that virus accumulation increased in CAT-silenced or 2b-overexpressing tomato plants compared with that in control plants, suggesting that the interaction between 2b and catalase facilitated the accumulation of CMV in hosts. However, both CMV accumulation and viral symptoms were reduced in αMMC transgenic tomato plants, indicating that αMMC engaged in an antiviral role in the plant response to CMV infection. Molecular experimental analysis demonstrated that αMMC interfered with the interactions between catalases and 2b in a competitive manner, with the expression of αMMC inhibited by CMV infection. We further demonstrated that the inhibition of catalase activity by 2b was weakened by αMMC. Accordingly, αMMC transgenic plants exhibited a greater ability to maintain redox homeostasis than wild-type plants when infected with CMV. Altogether, these results reveal that αMMC retains catalase activity to inhibit CMV infection by subverting the interaction between 2b and catalase in tomato.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Solanum lycopersicum , Viroses , Catalase/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cucumovirus/genética , Doenças das Plantas
18.
J Plant Physiol ; 280: 153892, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566671

RESUMO

The phytohormone abscisic acid (ABA) plays essential roles in modulating drought stress responses. Mitochondrial alternative oxidase (AOX) is critical for reactive oxygen species (ROS) scavenging in drought stress responses. However, whether ABA signal in concert with AOX to moderate drought stress response remains largely unclear. In our study, we uncover the positive role of AOX in ABA-mediated drought tolerance in tomato (Solanum lycopersicum). Here, we report that ABA participates in the regulation of alternative respiration, and the increased AOX was found to improve drought tolerance by reducing total ROS accumulation. We also found that transcription factor ABA response element-binding factor 1 (SlAREB1) can directly bind to the promoter of AOX1a to activate its transcription. Virus-induced gene silencing (VIGS) of SlAREB1 compromised the ABA-induced alternative respiratory pathway, disrupted redox homeostasis and decreased plant resistance to drought stress, while overexpression of AOX1a in TRV2-SlAREB1 plants partially rescued the severe drought phenotype. Taken together, our results indicated that AOX1a plays an essential role in ABA-mediated drought tolerance partially in a SlAREB1-dependent manner, providing new insights into how ABA modulates ROS levels to cope with drought stress by AOX.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Resistência à Seca , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo
19.
Plant Cell Environ ; 45(12): 3492-3504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36130868

RESUMO

Heat stress (HS) caused by ambient high temperature poses a threat to plants. In the natural and agricultural environment, plants often encounter repeated and changeable HS. Moderate HS primes plants to establish a molecular 'thermomemory' that enables plants to withstand a later-and possibly more extreme-HS attack. Recent years, brassinosteroids (BRs) have been implicated in HS response, whereas the information is lacking on whether BRs signal transduction modulates thermomemory. Here, we uncover the positive role of BRs signalling in thermomemory of Arabidopsis thaliana. Heat priming induces de novo synthesis and nuclear accumulation of BRI1-Ethyl methyl sulfon-SUPPRESSOR (BES1), which is the key regulator of BRs signalling. BRs promote the accumulation of dephosphorylated BES1 during memory phase, and stoppage of BRs synthesis impairs dephosphorylation. During HS memory, BES1 is required to maintain sustained induction of HS memory genes and directly targets APX2 and HSFA3 for activation. In summary, our results reveal a BES1-required, BRs-enhanced transcriptional control module of thermomemory in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Brassinosteroides/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/metabolismo , Plantas Geneticamente Modificadas/metabolismo
20.
New Phytol ; 236(5): 1871-1887, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111350

RESUMO

Phosphorus (P) is a limiting nutrient for plant growth and productivity. Thus, a deep understanding of the molecular mechanisms of plants' response to phosphate starvation is significant when breeding crops with higher phosphorus-use efficiency. Here, we found that GARP-type transcription factor GLK1 acted as a positive regulator for phosphate-starvation response (PSR) via the PHR1-dependent pathway in Arabidopsis thaliana. GLK1 increased the transcription activity of PHR1 through the direct physical interaction and regulated the multiple responses to inorganic orthophosphate (Pi) starvation. Nitrogen (N) is a key factor in the regulation of PSR. We also found that the N status controlled the function of the GLK1-PHR1 signaling module under Pi-deficient (LP) conditions by regulating the accumulation of GLK1 and PHR1. Ultimately, we showed that the presence of GLK1 effectively promoted the protein accumulation of PHR1 at low N concentrations, and this action was helpful to maintain the activation of PSR. According to these findings, we establish the working model for GLK1 in PSR and propose that GLK1 mediates the interaction between N and P by influencing the effect of N on PHR1 in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Fósforo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...