Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(7): 4540-4554, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022233

RESUMO

Background: In the past, many researchers have studied the correlation between quantitative parameters of computed tomography (CT) and parameters of pulmonary function test (PFT) in patients with chronic obstructive pulmonary disease (COPD) with good results. Most of these studies have focused on the whole-lung level. In this study, we analyzed the biphasic CT lung volume parameters and the percentage of emphysema volume in different lobes of the lungs of patients with different grades of COPD and assessed their relationship with different lung function indices. Methods: We retrospectively collected patients who underwent PFTs at The First Affiliated Hospital of Guangzhou Medical University from 1 July 2019 to 27 January 2020, and underwent chest respiratory dual-phase CT scans within 1 week, including 112 non-COPD patients and 297 COPD patients. We quantified the biphasic CT lung volume parameters and the percentage of emphysema volume in different lobes using a pulmonary image analysis tool. One-way analysis of variance (ANOVA) and Kruskal-Wallis H method were used to compare the quantitative CT parameters of each lung lobe in different groups. The correlation between quantitative CT parameters of different lung lobes and lung function indices was assessed using multiple linear regression. Results: Among the 3 biphasic CT lung volume parameters, only volume change/inspiratory lung volume (∆LV/LVin) in the non-COPD control, mildly to moderately severe, and severe to extremely severe groups had statistical differences in each lobe level (all P<0.05). Correlation was significant between LVin and different lung function indices and between low attenuation areas percent below the threshold of -950 in the inspiratory phase [low attenuation area below -950 in the inspiratory phase (%LAA-950in)] and lung function indices in the left lower lobe (all P<0.05). There was statistically significant correlation between expiratory lung volume and ∆LV/LVin and lung function indices in the right lower lung (all P≤0.001). In the remaining lobes, LVin, expiratory lung volume, ∆LV/LVin, and %LAA-950in correlated with only some of the lung function indices. Conclusions: The percentage of emphysema volume did not differ between lobes in the non-COPD control and severe to extremely severe COPD populations. LVin and %LAA-950in in the left upper lobe, expiratory lung volume and ∆LV/LVin in the right lower lobe were more reflective of the changes in lung function indices of the patients, whereas the correlation of the 3 biphasic CT lung volume parameters and the percentage of emphysema volume in the upper lobes of both lungs and the right middle lung with lung function indices was unclear.

2.
Pharmacogn Mag ; 10(37): 77-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24696550

RESUMO

BACKGROUND: Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. OBJECTIVE: To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. MATERIALS AND METHODS: P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige-Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. RESULTS: The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 µg g(-1) and was 2.55-fold higher than that of natural plants. CONCLUSION: Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA