Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 217: 114863, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414106

RESUMO

This study investigated and compared polycyclic aromatic hydrocarbons (PAHs) in crab (Xenograpsus testudinatus), suspended particulate matter, and surface sediment sampled from Kuei-shan-tao (KST) shallow water vents just offshore northeast Taiwan. The total concentrations of PAHs (t-PAHs) in suspended particles near the vents (533-685 ng g-1 dw) were two orders of magnitude higher than the overlying sediment (3.42-6.06 ng g-1 dw). The t-PAHs in sediment were significantly lower than those found in suspended particulate matter and all crab tissues tested, including hepatopancreas (192-1154 ng g-1 dw), gill (221-748 ng g-1 dw), muscle (30-174 ng g-1 dw), and exoskeleton (22-96 ng g-1 dw). Principal component analysis (PCA) indicated tissue-specific bioaccumulation of PAHs in crabs. The compositions of PAHs in gill, muscle, and exoskeleton were mainly low molecular weight, while the composition in the hepatopancreas included both high and low molecular weight PAHs. Highly variable but characteristic PAH congeners and concentrations in crab tissues and ambient aquatic particles reflect bioaccumulation.


Assuntos
Braquiúros , Fontes Hidrotermais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Taiwan , Sedimentos Geológicos , Material Particulado/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Anal Chem ; 93(24): 8442-8449, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34106681

RESUMO

A new analytical method has been developed to determine atomic 236U/238U ratios in samples with only femtograms of 236U using a secondary electron multiplier (SEM) on a multicollector high-resolution inductively coupled plasma mass spectrometer (MC-ICPMS). The abundance sensitivity of the 238U tail at 236 atomic mass unit is reduced from 10-6 to 10-10 with the deployment of a retarding potential quadrupole lens. This method features the reduction of polyatomic interferences from hydride, nitride, lead, and plutonium and the evaluation of nonlinear SEM behavior. The instrument sensitivity is 1-2%, and the estimated methodological detection limit of the 236U/238U atomic ratio is as low as 2 × 10-10. Measurements on reference materials with 236U/238U ratios of 10-7-10-9, including the IRMM-075 series and the ETH Zurich in-house standard ZUTRI, demonstrate the accuracy of our MC-ICPMS technique. The analytical precisions (2σ) are ±4% for 5 fg of 236U at a 236U/238U of 1 × 10-8 and ±8% for 2 fg of 236U at a 236U/238U of 4 × 10-9 level. Compared to state-of-the-art accelerator mass spectrometry techniques and triple quadrupole-based ICPMS, our detection limit is not as low, but the required sample size is 3-40 times lower, and the throughput is as high as 3-4 samples per hour. The new MC-ICPMS-SEM technique is sensitive enough for determining 236U/238U in various small natural samples, such as marine carbonates and seawater.


Assuntos
Plutônio , Carbonatos , Espectrometria de Massas , Água do Mar , Análise Espectral
3.
Mar Environ Res ; 170: 105361, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022419

RESUMO

Differences in the initial configuration of ecological communities may lead to contrasting trajectories when facing environmental changes. Here, we propose to uncover the determinism of benthic communities by carrying out a detailed investigation of their response to small-scale modification of environmental conditions, including physical, chemical, and geological factors. At ten locations (confounding site and depth) in Northern Taiwan, communities were delineated using a morpho-functional classification of the organisms. A k-means clustering was used to identify k homogenous groups among transects. Their environmental determinism was examined by combining this result with 16 environmental variables of transect conditions into a regression tree framework. Biotic and abiotic data were further analyzed with a Multivariate Regression Tree (MRT) to ascertain the hierarchical environmental determinism. The classifications produced by both approaches were compared using the Adjusted Rand index (ARI) to assess the predictive power of unsupervised clustering on its missing explanatory components (abiotic variables). k-means and MRT produced five clusters, respectively, with a similarity of 0.82 in ARI. Wave motion, followed by substrate types resolved most of the variance, while chemical factors in this study were uniform throughout the region. Comparable structures for both methods (clustering groups) demonstrated that the delineated clusters matched with contrasting environmental conditions which could be explained by the existence of various benthic communities. Further consideration of these different communities and their environmental context will be important in determining their trajectories under global changes and may help in the interpretation of community modifications with changing environmental conditions.


Assuntos
Antozoários , Recifes de Corais , Animais , Análise por Conglomerados , Ecossistema , Taiwan
4.
Geobiology ; 19(1): 87-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043601

RESUMO

Shallow-water hydrothermal plumes concomitantly host both photosynthetic and chemoautotrophic organisms in a single biotope. Yet, rate measurements to quantify the contributions of different autotrophic activity types are scarce. Herein, we measured the light and dark dissolved inorganic carbon (DIC) uptake rates in the plume water of the Kueishantao hydrothermal field using the 13 C-labeling approach. Seventy percent of the plume-water samples had chemoautotrophy as the dominant mode of carbon fixation, with the dark DIC uptake rates (up to 18.6 mg C/m3 /h) within the range of the primary production in productive inner-shelf waters. When considered alongside the geochemical and microbiological observations, the rate data reveal the distribution of different trophic activities in the hydrothermal plume. The autotrophic activity at the initial phase of plume dispersal is low. This is explained by the short response time the chemoautotrophs have to the stimulation from vent-fluid discharge, and the harmful effects of hydrothermal substances on phytoplankton. As plume dispersal and mixing continue, chemoautotrophic activities begin to rise and peak in waters that have low-to-moderate Si(OH)4 content. Toward the plume margin, chemoautotrophy declines to background levels, whereas photosynthesis by phytoplankton regains importance. Our results also provide preliminary indication to the loci of enhanced heterotrophy in the plume. Results of artificial mixing experiments suggest that previously formed plume water is the primary source of microbial inoculum for new plume water. This self-inoculation mechanism, in combination with the intense DIC uptake, helps to sustain a distinct planktonic autotrophic community in this rapidly flushed hydrothermal plume.


Assuntos
Crescimento Quimioautotrófico , Fontes Hidrotermais , Água do Mar , Ciclo do Carbono , Fitoplâncton , Taiwan , Água
5.
MethodsX ; 7: 101033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953465

RESUMO

The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids.•We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems.•We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor.•We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.

7.
J Food Drug Anal ; 26(2): 778-787, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567249

RESUMO

Mulberry (Morus alba) leaf has been used in Chinese medicine as the remedy for hyperlipidemia and metabolic disorders. Recent report indicated Mulberry leaf extract (MLE) attenuated dyslipidemia and lipid accumulation in high fat diet (HFD)-fed mice. Non-alcoholic fatty liver (NAFLD) is generally considered as the liver component of metabolic syndrome. The hepatic lipid infiltration induces oxidative stress, and is associated with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) which are regulated by the leptin and adiponectin. MLE could prevent obesity-related NAFLD via downregulating the lipogenesis enzymes while upregulating the lipolysis markers. Treatment of MLE, especially at 2%, enhanced the expression of superoxide dismutase (SOD) and clenched the oxidative stress of liver. MLE decreased the plasma level of leptin but increased adiponectin. The advantage of MLE is supposed mainly attributed to chlorogenic acid derivative. We suggest MLE, with promising outcome of research, could be nutraceutical to prevent obesity and related NAFLD.


Assuntos
Adipocinas/metabolismo , Morus/química , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Dieta Hiperlipídica , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Folhas de Planta/química , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
mBio ; 8(2)2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270584

RESUMO

Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml-1 (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses.


Assuntos
Sedimentos Geológicos/virologia , Oceanos e Mares , Vírus/classificação , Vírus/isolamento & purificação , Archaea/virologia , Bactérias/virologia , Fontes Termais , Temperatura Alta , Metagenômica , Microscopia Eletrônica de Transmissão , Carga Viral , Vírion/ultraestrutura , Vírus/genética , Vírus/ultraestrutura
9.
Front Microbiol ; 7: 454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092118

RESUMO

Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 1.2 nW ml(-1)) was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63°C) and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb) near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 h during a step-wise isothermal scan from 35.5 to 85.0°C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 × 10(4) cells ml(-1) FLUID) and their subsequent metabolic activity at temperatures greater than 50°C. The average cellular energy consumption (5.68 pW cell(-1)) reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8°C), relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 h as temperature ramped from 34.8 to 43.0°C. Corresponding cell-specific energy turnover rates (0.18 pW cell(-1)) were converted to oxygen uptake rates of 24.5 nmol O2 ml(-1) FLUID d(-1), validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

10.
Sci Rep ; 6: 22541, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935537

RESUMO

The rock-hosted, oceanic crustal aquifer is one of the largest ecosystems on Earth, yet little is known about its indigenous microorganisms. Here we provide the first phylogenetic and functional description of an active microbial community residing in the cold oxic crustal aquifer. Using subseafloor observatories, we recovered crustal fluids and found that the geochemical composition is similar to bottom seawater, as are cell abundances. However, based on relative abundances and functional potential of key bacterial groups, the crustal fluid microbial community is heterogeneous and markedly distinct from seawater. Potential rates of autotrophy and heterotrophy in the crust exceeded those of seawater, especially at elevated temperatures (25 °C) and deeper in the crust. Together, these results reveal an active, distinct, and diverse bacterial community engaged in both heterotrophy and autotrophy in the oxygenated crustal aquifer, providing key insight into the role of microbial communities in the ubiquitous cold dark subseafloor biosphere.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Microbiologia da Água , Oceano Atlântico
11.
ISME J ; 10(8): 2033-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872042

RESUMO

Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity.


Assuntos
Archaea/classificação , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Metano/metabolismo , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Silicatos
12.
Food Funct ; 7(2): 728-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26787242

RESUMO

Although Abelmoschus esculentus (AE) is known for anti-hyperglycemia, few reports have addressed its target. Our recent studies have focused on diabetic renal epithelial to mesenchymal transition (EMT), which plays a critical role in fibrosis that accompanies increasing vimentin and suggested signals DPP-4/AT-1/TGF-ß1. This study aimed to investigate whether AE is useful for preventing diabetic renal EMT. We used a succession of extractions and obtained the corresponding fractions F1-F5, each with its own individual properties: F1 inhibits high glucose-stimulated vimentin, AT-1, TGF-ß1, and DPP-4, and recovers E-cadherin in tubular cells; F2 decreases high glucose-induced vimentin, AT-1 and DPP-4; F3-F5 do not reduce the expression of vimentin. Chemical analysis revealed that F1 is rich of flavonoid glycosides especially quercetin glucosides, and pentacyclic triterpene ester. F2 contains a large amount of carbohydrates and polysaccharides composed of uronic acid, galactose, glucose, myo-inositol etc. In conclusion, AE has the potential to serve as an adjuvant for diabetic nephropathy, with F1 and F2 especially deserving further investigation and development.


Assuntos
Abelmoschus/química , Nefropatias Diabéticas/fisiopatologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Rim/fisiopatologia , Extratos Vegetais/farmacologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/genética , Vimentina/metabolismo
13.
Front Microbiol ; 5: 119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723917

RESUMO

To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 million years old, respectively), but differ with respect to borehole depth and temperature at the sediment-basement interface (147 m and 39°C vs. 295 m and 64°C, respectively). Cloning and sequencing of PCR-amplified small subunit ribosomal RNA genes revealed that fluids retrieved from Hole 1025C were dominated by relatives of the genus Desulfobulbus of the Deltaproteobacteria (56% of clones) and Candidatus Desulforudis of the Firmicutes (17%). Fluids sampled from Hole 1026B also contained plausible deep subseafloor inhabitants amongst the most abundant clone lineages; however, both geochemical analysis and microbial community structure reveal the borehole to be compromised by bottom seawater intrusion. Regardless, this study provides independent support for previous observations seeking to identify phylogenetic groups of microorganisms common to the deep ocean crustal biosphere, and extends previous observations by identifying additional lineages that may be prevalent in this unique environment.

14.
ISME J ; 7(1): 161-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22791235

RESUMO

Despite its immense size, logistical and methodological constraints have largely limited microbiological investigations of the subseafloor basement biosphere. In this study, a unique sampling system was used to collect fluids from the subseafloor basaltic crust via a Circulation Obviation Retrofit Kit (CORK) observatory at Integrated Ocean Drilling Program borehole 1301A, located at a depth of 2667 m in the Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Here, a fluid delivery line directly accesses a 3.5 million years old basalt-hosted basement aquifer, overlaid by 262 m of sediment, which serves as a barrier to direct exchange with bottom seawater. At an average of 1.2 × 10(4) cells ml(-1), microorganisms in borehole fluids were nearly an order of magnitude less abundant than in surrounding bottom seawater. Ribosomal RNA genes were characterized from basement fluids, providing the first snapshots of microbial community structure using a high-integrity fluid delivery line. Interestingly, microbial communities retrieved from different CORKs (1026B and 1301A) nearly a decade apart shared major community members, consistent with hydrogeological connectivity. However, over three sampling years, the dominant gene clone lineage changed from relatives of Candidatus Desulforudis audaxviator within the bacterial phylum Firmicutes in 2008 to the Miscellaneous Crenarchaeotic Group in 2009 and a lineage within the JTB35 group of Gammaproteobacteria in 2010, and statistically significant variation in microbial community structure was observed. The enumeration of different phylogenetic groups of cells within borehole 1301A fluids supported our observation that the deep subsurface microbial community was temporally dynamic.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Genes de RNAr , Sedimentos Geológicos/química , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Silicatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...