Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463940

RESUMO

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

2.
Commun Med (Lond) ; 3(1): 77, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253966

RESUMO

BACKGROUND: Hematoxylin and Eosin (H&E)-based frozen section (FS) pathology is presently the global standard for intraoperative tumor assessment (ITA). Preparation of frozen section is labor intensive, which might consume up-to 30 minutes, and is susceptible to freezing artifacts. An FS-alternative technique is thus necessary, which is sectioning-free, artifact-free, fast, accurate, and reliably deployable without machine learning and/or additional interpretation training. METHODS: We develop a training-free true-H&E Rapid Fresh digital-Pathology (the-RFP) technique which is 4 times faster than the conventional preparation of frozen sections. The-RFP is assisted by a mesoscale Nonlinear Optical Gigascope (mNLOG) platform with a streamlined rapid artifact-compensated 2D large-field mosaic-stitching (rac2D-LMS) approach. A sub-6-minute True-H&E Rapid whole-mount-Soft-Tissue Staining (the-RSTS) protocol is introduced for soft/frangible fresh brain specimens. The mNLOG platform utilizes third harmonic generation (THG) and two-photon excitation fluorescence (TPEF) signals from H and E dyes, respectively, to yield the-RFP images. RESULTS: We demonstrate the-RFP technique on fresh excised human brain specimens. The-RFP enables optically-sectioned high-resolution 2D scanning and digital display of a 1 cm2 area in <120 seconds with 3.6 Gigapixels at a sustained effective throughput of >700 M bits/sec, with zero post-acquisition data/image processing. Training-free blind tests considering 50 normal and tumor-specific brain specimens obtained from 8 participants reveal 100% match to the respective formalin-fixed paraffin-embedded (FFPE)-biopsy outcomes. CONCLUSIONS: We provide a digital ITA solution: the-RFP, which is potentially a fast and reliable alternative to FS-pathology. With H&E-compatibility, the-RFP eliminates color- and morphology-specific additional interpretation training for a pathologist, and the-RFP-assessed specimen can reliably undergo FFPE-biopsy confirmation.


Brain tumors can be fatal and surgery is often required to remove them. During surgery, clinicians need to look for any leftover tumor tissue so that recurrence of the disease can be avoided. This requires sectioning of frozen tissue samples, staining them, and visualizing structural details under a microscope in the lab. This process should be fast to make the operation shorter and safer for the patient. Here, we provide an alternative approach to staining and imaging tumor samples, which is much faster than the current process. We show that our approach works with fresh tumor samples, avoiding the need to freeze and physically section them. We can distinguish normal versus tumor tissues, and pathologists do not require special training to use our approach. Our approach might ultimately help to improve the speed, safety, and outcomes of brain tumor surgery.

3.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869225

RESUMO

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
4.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168353

RESUMO

The highly polygenic nature of human longevity renders cross-trait pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between the aging-related traits (ARTs), we sought to model the additive variance in lifespan as a function of cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.

5.
J Neuropathol Exp Neurol ; 81(5): 363-376, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35388433

RESUMO

Hereditary transthyretin (ATTRv) amyloidosis is a systemic disease with amyloid deposition in the peripheral and autonomic nervous systems caused by mutation of transthyretin (TTR) gene. The mutant TTR S77Y is the second prevalent mutation in many countries. In Taiwan, A97S mutant accounts for more than 90% of cases. Although distinct clinical manifestations such as dysphagia, carpal tunnel syndrome, and sudden cardiac death occur, the underlying pathology has not been elucidated. Here, we report the first autopsy cases of ATTRv S77Y and A97S and comprehensively compare the pathology underlying the unique clinical manifestations. This study demonstrated the following: (1) distinct spatial patterns of amyloid deposits in peripheral nerves, with a tendency toward more amyloid deposition in the large peripheral nerves, particularly the median nerves, and scarcely in the sural nerves, and different amyloid distribution in different genotypes; (2) amyloid deposits in the conduction system of the heart in addition to surrounding cardiomyocytes; (3) extensive amyloid deposits in the larynx and gastrointestinal tract, contributing to the unique clinical symptom of dysphagia; and (4) characteristic TTR intracytoplasmic inclusions in the hepatocytes of A97S. The pathology of the first autopsied cases of ATTRv S77Y and A97S provides pathology and mechanisms underlying unique clinical manifestations.


Assuntos
Neuropatias Amiloides Familiares , Transtornos de Deglutição , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Autopsia , Humanos , Placa Amiloide , Pré-Albumina/genética
6.
Int J Neuropsychopharmacol ; 25(7): 525-533, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34979555

RESUMO

BACKGROUND: Bipolar disorder (BD) is associated with cognitive impairment and mitochondrial dysfunction. However, the associations among mitochondrial DNA copy number (MCN), treatment response, and cognitive function remain elusive in BD patients. METHODS: Sixty euthymic BD patients receiving valproate (VPA) and 66 healthy controls from the community were recruited. The indices of metabolic syndrome (MetS) were measured. Quantitative polymerase chain reaction analysis of blood leukocytes was used to measure the MCN. Cognitive function was measured by calculating perseverative errors and completed categories on the Wisconsin Card Sorting Test (WCST). The VPA treatment response was measured using the Alda scale. RESULTS: BD patients had significantly higher MCN, triglyceride, and C-reactive protein (CRP) levels, waist circumference, and worse performance on the WCST than the controls. Regression models showed that BD itself and the VPA concentration exerted significant effects on increased MCN levels. Moreover, the receiver operating characteristic curve analysis showed that an MCN of 2.05 distinguished VPA responders from nonresponders, with an area under the curve of 0.705 and a sensitivity and specificity of 0.529 and 0.816, respectively. An MCN level ≥2.05 was associated with 5.39 higher odds of being a VPA responder (P = .006). BD patients who were stratified into the high-MCN group had a higher VPA response rate, better WCST performance, lower CRP level, and less MetS. CONCLUSIONS: The study suggests a link between the peripheral MCN and cognitive function in BD patients. As an inflammatory status, MetS might modulate this association.


Assuntos
Transtorno Bipolar , Síndrome Metabólica , Cognição , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Humanos , Mitocôndrias/metabolismo , Testes Neuropsicológicos , Ácido Valproico/uso terapêutico
7.
Cell Rep ; 37(6): 109965, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758328

RESUMO

The North American beaver is an exceptionally long-lived and cancer-resistant rodent species. Here, we report the evolutionary changes in its gene coding sequences, copy numbers, and expression. We identify changes that likely increase its ability to detoxify aldehydes, enhance tumor suppression and DNA repair, and alter lipid metabolism, potentially contributing to its longevity and cancer resistance. Hpgd, a tumor suppressor gene, is uniquely duplicated in beavers among rodents, and several genes associated with tumor suppression and longevity are under positive selection in beavers. Lipid metabolism genes show positive selection signals, changes in copy numbers, or altered gene expression in beavers. Aldh1a1, encoding an enzyme for aldehydes detoxification, is particularly notable due to its massive expansion in beavers, which enhances their cellular resistance to ethanol and capacity to metabolize diverse aldehyde substrates from lipid oxidation and their woody diet. We hypothesize that the amplification of Aldh1a1 may contribute to the longevity of beavers.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Aldeídos/metabolismo , Genes Supressores de Tumor , Genoma , Lipídeos/química , Longevidade , Família Aldeído Desidrogenase 1/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Filogenia , Roedores
8.
Sci Rep ; 11(1): 20511, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654853

RESUMO

Alzheimer's disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms-e.g., the complement and coagulation cascade and phosphorylation and activation of immune response-and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes-e.g., IL1RAP, PMAIP1, LAMTOR4-as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
9.
Nat Aging ; 1(9): 783-794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-37117627

RESUMO

Extreme longevity in humans has a strong genetic component, but whether this involves genetic variation in the same longevity pathways as found in model organisms is unclear. Using whole-exome sequences of a large cohort of Ashkenazi Jewish centenarians to examine enrichment for rare coding variants, we found most longevity-associated rare coding variants converge upon conserved insulin/insulin-like growth factor 1 signaling and AMP-activating protein kinase signaling pathways. Centenarians have a number of pathogenic rare coding variants similar to control individuals, suggesting that rare variants detected in the conserved longevity pathways are protective against age-related pathology. Indeed, we detected a pro-longevity effect of rare coding variants in the Wnt signaling pathway on individuals harboring the known common risk allele APOE4. The genetic component of extreme human longevity constitutes, at least in part, rare coding variants in pathways that protect against aging, including those that control longevity in model organisms.


Assuntos
Envelhecimento , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Envelhecimento/genética , Transdução de Sinais , Centenários , Alelos
10.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
11.
Nat Metab ; 2(8): 663-672, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719537

RESUMO

Ageing is the greatest risk factor for most common chronic human diseases, and it therefore is a logical target for developing interventions to prevent, mitigate or reverse multiple age-related morbidities. Over the past two decades, genetic and pharmacologic interventions targeting conserved pathways of growth and metabolism have consistently led to substantial extension of the lifespan and healthspan in model organisms as diverse as nematodes, flies and mice. Recent genetic analysis of long-lived individuals is revealing common and rare variants enriched in these same conserved pathways that significantly correlate with longevity. In this Perspective, we summarize recent insights into the genetics of extreme human longevity and propose the use of this rare phenotype to identify genetic variants as molecular targets for gaining insight into the physiology of healthy ageing and the development of new therapies to extend the human healthspan.


Assuntos
Descoberta de Drogas , Genética , Envelhecimento Saudável/genética , Longevidade/genética , Envelhecimento/genética , Animais , Humanos
12.
Sci Rep ; 8(1): 5535, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615825

RESUMO

Malignant breast cancer remains a major health threat to women of all ages worldwide and epigenetic variations on DNA methylation have been widely reported in cancers of different types. We profiled DNA methylation with ERRBS (Enhanced Reduced Representation Bisulfite Sequencing) across four main stages of tumor progression in the MMTV-PyMT mouse model (hyperplasia, adenoma/mammary intraepithelial neoplasia, early carcinoma and late carcinoma), during which malignant transition occurs. We identified a large number of differentially methylated cytosines (DMCs) in tumors relative to age-matched normal mammary glands from FVB mice. Despite similarities, the methylation differences of the premalignant stages were distinct from the malignant ones. Many differentially methylated loci were preserved from the first to the last stage throughout tumor progression. Genes affected by methylation gains were enriched in Polycomb repressive complex 2 (PRC2) targets, which may present biomarkers for early diagnosis and targets for treatment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas do Grupo Polycomb/genética , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Prognóstico
13.
Bioinformatics ; 34(10): 1786-1788, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29300829

RESUMO

Summary: Although the genome-wide association study (GWAS) is a powerful method to identify disease-associated variants, it does not directly address the biological mechanisms underlying such genetic association signals. Here, we present PGA, a Perl- and Java-based program for post-GWAS analysis that predicts likely disease genes given a list of GWAS-reported variants. Designed with a command line interface, PGA incorporates genomic and eQTL data in identifying disease gene candidates and uses gene network and ontology data to score them based upon the strength of their relationship to the disease in question. Availability and implementation: http://zdzlab.einstein.yu.edu/1/pga.html. Contact: zhengdong.zhang@einstein.yu.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Predisposição Genética para Doença , Software , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Prostaglandinas A , Locos de Características Quantitativas
14.
Nucleic Acids Res ; 46(D1): D113-D120, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29077884

RESUMO

Enhancers, as specialized genomic cis-regulatory elements, activate transcription of their target genes and play an important role in pathogenesis of many human complex diseases. Despite recent systematic identification of them in the human genome, currently there is an urgent need for comprehensive annotation databases of human enhancers with a focus on their disease connections. In response, we built the Human Enhancer Disease Database (HEDD) to facilitate studies of enhancers and their potential roles in human complex diseases. HEDD currently provides comprehensive genomic information for ∼2.8 million human enhancers identified by ENCODE, FANTOM5 and RoadMap with disease association scores based on enhancer-gene and gene-disease connections. It also provides Web-based analytical tools to visualize enhancer networks and score enhancers given a set of selected genes in a specific gene network. HEDD is freely accessible at http://zdzlab.einstein.yu.edu/1/hedd.php.


Assuntos
Bases de Dados de Ácidos Nucleicos , Elementos Facilitadores Genéticos , Cromossomos Humanos Par 9/genética , Doença/genética , Redes Reguladoras de Genes , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Internet , Anotação de Sequência Molecular , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
15.
PLoS Genet ; 13(12): e1007142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281626

RESUMO

Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone.


Assuntos
Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Simulação por Computador , Interpretação Estatística de Dados , Síndrome de DiGeorge/genética , Humanos , Fenótipo , Fatores de Risco , Análise de Sequência de DNA/estatística & dados numéricos
16.
BMC Genomics ; 18(1): 185, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212608

RESUMO

BACKGROUND: Malignant breast cancer with complex molecular mechanisms of progression and metastasis remains a leading cause of death in women. To improve diagnosis and drug development, it is critical to identify panels of genes and molecular pathways involved in tumor progression and malignant transition. Using the PyMT mouse, a genetically engineered mouse model that has been widely used to study human breast cancer, we profiled and analyzed gene expression from four distinct stages of tumor progression (hyperplasia, adenoma/MIN, early carcinoma and late carcinoma) during which malignant transition occurs. RESULTS: We found remarkable expression similarity among the four stages, meaning genes altered in the later stages showed trace in the beginning of tumor progression. We identified a large number of differentially expressed genes in PyMT samples of all stages compared with normal mammary glands, enriched in cancer-related pathways. Using co-expression networks, we found panels of genes as signature modules with some hub genes that predict metastatic risk. Time-course analysis revealed genes with expression transition when shifting to malignant stages. These may provide additional insight into the molecular mechanisms beyond pathways. CONCLUSIONS: Thus, in this study, our various analyses with the PyMT mouse model shed new light on transcriptomic dynamics during breast cancer malignant progression.


Assuntos
Antígenos Transformantes de Poliomavirus/genética , Progressão da Doença , Perfilação da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias
17.
Genetics ; 204(4): 1587-1600, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27754856

RESUMO

Schizophrenia is a severe mental disorder with a large genetic component. Recent genome-wide association studies (GWAS) have identified many schizophrenia-associated common variants. For most of the reported associations, however, the underlying biological mechanisms are not clear. The critical first step for their elucidation is to identify the most likely disease genes as the source of the association signals. Here, we describe a general computational framework of post-GWAS analysis for complex disease gene prioritization. We identify 132 putative schizophrenia risk genes in 76 risk regions spanning 120 schizophrenia-associated common variants, 78 of which have not been recognized as schizophrenia disease genes by previous GWAS. Even more significantly, 29 of them are outside the risk regions, likely under regulation of transcriptional regulatory elements contained therein. These putative schizophrenia risk genes are transcriptionally active in both brain and the immune system, and highly enriched among cellular pathways, consistent with leading pathophysiological hypotheses about the pathogenesis of schizophrenia. With their involvement in distinct biological processes, these putative schizophrenia risk genes, with different association strengths, show distinctive temporal expression patterns, and play specific biological roles during brain development.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
18.
Breast Cancer Res ; 18(1): 75, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27449149

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA molecules of about 22 nucleotides which function to silence the expression of their target genes. Numerous studies have shown that miRNAs are not only key regulators in important cellular processes but are also drivers in the development of many diseases, especially cancer. Estrogen receptor positive luminal B is the second most common but the least studied subtype of breast cancer. Only a few studies have examined the expression profiles of miRNAs in luminal B breast cancer, and their regulatory roles in cancer progression have yet to be investigated. METHODS: In this study, using polyoma middle T antigen (PyMT) mice, a widely used luminal B breast cancer model, we profiled microRNA (miRNA) expression at four time points that represent different key developmental stages of cancer progression. We considered the expression of both miRNAs and messenger RNAs (mRNAs) at these time points to improve the identification of regulatory targets of miRNAs. By combining gene functional and pathway annotation with miRNA-mRNA interactions, we created a PyMT-specific tripartite miRNA-mRNA-pathway network and identified novel functional regulatory programs (FRPs). RESULTS: We identified 151 differentially expressed miRNAs with a strict dual nature of either upregulation or downregulation during the whole course of disease progression. Among 82 newly discovered breast-cancer-related miRNAs, 35 can potentially regulate 271 protein-coding genes based on their sequence complementarity and expression profiles. We also identified miRNA-mRNA regulatory modules driving specific cancer-related biological processes. CONCLUSIONS: In this study we profiled the expression of miRNAs during breast cancer progression in the PyMT mouse model. By integrating miRNA and mRNA expression profiles, we identified differentially expressed miRNAs and their target genes involved in several hallmarks of cancer. We applied a novel clustering method to an annotated miRNA-mRNA regulatory network and identified network modules involved in specific cancer-related biological processes.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Animais , Neoplasias da Mama/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , RNA Mensageiro/genética , Transcriptoma
19.
Hum Mol Genet ; 25(14): 2934-2947, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179790

RESUMO

Although studies over the last decades have firmly connected a number of genes and molecular pathways to aging, the aging process as a whole still remains poorly understood. To gain novel insights into the mechanisms underlying aging, instead of considering aging genes individually, we studied their characteristics at the systems level in the context of biological networks. We calculated a comprehensive set of network characteristics for human aging-related genes from the GenAge database. By comparing them with other functional groups of genes, we identified a robust group of aging-specific network characteristics. To find the structural basis and the molecular mechanisms underlying this aging-related network specificity, we also analyzed protein domain interactions and gene expression patterns across different tissues. Our study revealed that aging genes not only tend to be network hubs, playing important roles in communication among different functional modules or pathways, but also are more likely to physically interact and be co-expressed with essential genes. The high expression of aging genes across a large number of tissue types also points to a high level of connectivity among aging genes. Unexpectedly, contrary to the depletion of interactions among hub genes in biological networks, we observed close interactions among aging hubs, which renders the aging subnetworks vulnerable to random attacks and thus may contribute to the aging process. Comparison across species reveals the evolution process of the aging subnetwork. As the organisms become more complex, the complexity of its aging mechanisms increases and their aging hub genes are more functionally connected.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Biologia de Sistemas , Biologia Computacional , Bases de Dados Genéticas , Genes Essenciais/genética , Humanos , Transdução de Sinais/genética
20.
Proteins ; 82(10): 2783-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043850

RESUMO

The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM-based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS-import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS-import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM-based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Sinais de Localização Nuclear/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , alfa Carioferinas/metabolismo , Algoritmos , Inteligência Artificial , Biologia Computacional , Proteínas de Ligação a DNA/química , Bases de Dados de Proteínas , Humanos , Internet , Cinética , Sinais de Localização Nuclear/química , Complexo de Reconhecimento de Origem/química , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Fatores de Processamento de RNA , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Validação de Programas de Computador , Fatores de Transcrição/química , alfa Carioferinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...