Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(9): 6117-26, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26891701

RESUMO

Dipolar dyes comprising an arylamine as the electron donor, a cyanoacrylic acid as electron acceptor, and an electron deficient naphtho[2,3-c][1,2,5]thiadiazole (NTD) or naphtho[2,3-d][1,2,3]triazole (NTz) entity in the conjugated spacer, were developed and used as the sensitizers in dye-sensitized solar cells (DSSCs). The introduction of the NTD unit into the molecular frame distinctly narrows the HOMO/LUMO gap with electronic absorption extending to >650 nm. However, significant charge trapping and dye aggregation were found in these dyes. Under standard global AM 1.5 G illumination, the best cell photovoltaic performance achieved 6.37 and 7.53% (∼94% relative to N719-based standard cell) without and with chenodeoxycholic acid (CDCA) coadsorbent, respectively. Without CDCA, the NTz dyes have higher power conversion efficiency (7.23%) than NTD dyes due to less charge trapping, dye aggregation, and better dark current suppression.

2.
Chem Asian J ; 7(6): 1426-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492546

RESUMO

Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light-harvesting capabilities for application as photosensitizers in dye-sensitized solar cells (DSSCs). The absorption, electrochemical, time-dependent density functional theory (TD-DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)-based sensitizers have been fully characterized. The optical and TD-DFT studies show that the incorporation of a strongly electron-donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO(2) solar cells was investigated, and a power conversion efficiency as high as 1.57% was achieved, with an open-circuit voltage of 0.59 V, short-circuit current density of 3.63 mA cm(-2), and fill factor of 0.73 under simulated AM 1.5G solar illumination.

3.
J Phys Chem B ; 109(41): 19161-8, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16853471

RESUMO

An electrodeposited Ag adlayer (upd, underpotential deposition) is utilized to improve monolayer photopolymerization of diphenyldiacetylene derivatives (DPDAs) that would otherwise exhibit no polymerization in solid state. Topochemical reaction of diacetylene derivatives via solid-state 1,4-addition yields polydiacetylenes which are of great importance due to properties associated with their ene-yne conjugated backbones. The polymerization efficiency heavily depends on the molecular arrangement in the crystals. For example, crystals of most DPDA derivatives show no activity for topochemical reaction because the bulky phenyl end groups space out the triple bonds and thus DPDAs require relatively large translation and rotation angles for polymerization. In principle, topochemical reaction is viable if molecules are in optimal arrangement. The upd interlayer can be applied to tune the adsorbate-substrate interactions, intermolecular spacing, and the molecular tilt angle by controlling the coverage of the Ag adlayer. It is thus possible to manipulate the molecular arrangement of DPDAs for the subsequent polymerization. Successful photopolymerization of DPDA monolayers is realized from the decrease in nu(C[triple bond]C) intensity by infrared reflectance absorbance spectroscopy, growth of ene-yne pi-pi* transition by UV-vis measurements, and enhanced electrochemical stability by the cathodic desorption protocol. The optimal efficiency of polymerization takes place on upd-modified substrates that can generate approximately 45 degrees tilt angle for DPDA derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...