Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155575, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38636179

RESUMO

BACKGROUND: The prevalence and incidence of type 2 diabetes mellitus (T2DM) have dramatically increased. The intestinal flora and its derived metabolites are demonstrated to play vital roles in the etiology and onset of T2DM. Shouhuitongbian (SHTB) is a traditional Chinese formula to treat constipation. SHTB is composed of seven herbs and components of Colla corii asini (CCA) that are obtained from the hide of Equus asinus L.. Some of herbs in SHTB such as Aloe vera (L.) Burm.f., Cassia obtusifolia L., fruits of Lycium barbarum L., and Citrus aurantium L. have shown to improve insulin resistance (IR) and T2DM in early reports. We hypothesized that SHTB composed of these herbs has antidiabetic effects. The antidiabetic efficacy and mechanism of action of SHTB have not been previously reported. HYPOTHESIS/PURPOSE: To demonstrate the antidiabetic effect and elucidate the underlying mechanisms of SHTB from the perspective of gut microbiota. STUDY DESIGN: The main compounds were identified and quantified by high-performance liquid chromatography (HPLC)-mass spectrometry analysis. High fat diet (HFD)-fed mice and db/db mice were used to assess the antidiabetic effects and the mechanism of SHTB. The underlying mechanisms were evaluated by enzyme-linked immunosorbent assay (ELISA), western blot analysis, quantitative real time polymerase chain reaction (qPCR) analysis, 16S rRNA high-throughput sequencing, and targeted metabolome analysis. METHODS: HFD-fed mice and db/db mice were orally treated with the standard positive drug metformin (100 mg/kg/d) and with SHTB (200 and 100 mg/kg/d), which was chemically characterized according to the European Medicine Agency (EMA) guidelines. The beneficial effects of SHTB were studied by homeostasis model assessment of insulin resistance (HOMA-IR) index, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), total cholesterol (T-CHO), triglyceride (TG), and inflammation. Subsequently, 16S rDNA-based high-throughput pyrosequencing and GC-MS-based targeted metabolomics profiling were performed to analyze the gut microbiota composition and metabolites profile in the gut, respectively. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) / insulin receptor substrate 1 (IRS-1) / phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) pathway was evaluated via qPCR and western blot. RESULTS: Chemically characterized SHTB, in which six markers were quantified, effectively alleviated glucose intolerance and IR, ameliorated lipid metabolism dysfunction, and reduced inflammation. In addition, 16S rDNA sequencing found that SHTB reshaped the composition of intestinal flora, as indicated by the enrichment of Akkermansia and Parabacteroides in both HFD-fed and db/db mice. Moreover, SHTB enhanced the intestinal production of short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BSCFAs), and reduced the levels of the fecal and circulating branched-chain amino acids (BCAAs). The IRS-1/PI3K/AKT signaling pathway was upregulated after treatment with SHTB. CONCLUSION: Orally administration of SHTB effectively improved IR and reduced hyperglycemia in mice. Treatment with SHTB regulated the gut BCAAs-mTORC1/IRS-1/PI3K/AKT axis by enhancing the BCAAs catabolism in the gut, which attenuated the deleterious effect of BCAAs on the IRS-1 signaling pathway.

2.
Mol Ther Methods Clin Dev ; 32(1): 101194, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352269

RESUMO

The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400-500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.

3.
Nat Biomed Eng ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082180

RESUMO

Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.

4.
Radiother Oncol ; 189: 109911, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37709053

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced hypothyroidism (RIHT) is a common but underestimated late effect in head and neck cancers. However, no consensus exists regarding risk prediction or dose constraints in RIHT. We aimed to develop a machine learning model for the accurate risk prediction of RIHT based on clinical and dose-volume features and to evaluate its performance internally and externally. MATERIALS AND METHODS: We retrospectively searched two institutions for patients aged >20 years treated with definitive radiotherapy for nasopharyngeal or oropharyngeal cancer, and extracted their clinical information and dose-volume features. One was designated the developmental cohort, the other as the external validation cohort. We compared the performances of machine learning models with those of published normal tissue complication probability (NTCP) models. RESULTS: The developmental and external validation cohorts consisted of 378 and 49 patients, respectively. The estimated cumulative incidence rates of grade ≥1 hypothyroidism were 53.5% and 61.3% in the developmental and external validation cohorts, respectively. Machine learning models outperformed traditional NTCP models by having lower Brier scores at every time point and a lower integrated Brier score, while demonstrating a comparable calibration index and mean area under the curve. Even simplified machine learning models using only thyroid features performed better than did traditional NTCP algorithms. The machine learning models showed consistent performance between folds. The performance in a previously unseen external validation cohort was comparable to that of the cross-validation. CONCLUSIONS: Our model outperformed traditional NTCP models, with additional capabilities of predicting the RIHT risk at individual time points. A simplified model using only thyroid dose-volume features still outperforms traditional NTCP models and can be incorporated into future treatment planning systems for biological optimization.


Assuntos
Neoplasias de Cabeça e Pescoço , Hipotireoidismo , Humanos , Estudos Retrospectivos , Hipotireoidismo/epidemiologia , Hipotireoidismo/etiologia , Aprendizado de Máquina
5.
ACS Chem Neurosci ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000128

RESUMO

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, and it is neuropathologically defined as the accumulation of abnormally hyperphosphorylated tau (p-tau). Early detection of p-tau in the brain is of great value in the prevention and treatment of CTE. Previous experimental studies reported that positron emission tomography (PET) technique using several tau tracers are available for imaging certain neurodegenerative diseases. However, few studies have focused on the development of CTE tau tracers. In this work, we performed conventional molecular docking and molecular dynamics simulations to address the binding properties and mechanisms of PET tracers (18F-PM-PBB3, 18F-CBD-2115, 18F-PI-2620, 18F-RO-948, 18F-MK-6240, and 18F-flortaucipir) to CTE tau protofibrils. The results show that the hydrophobic cavity and the top of the concave structure of CTE tau protofibrils are the preferred binding sites for the six tracers, and 18F-PM-PBB3 has the most competitive binding affinity to CTE tau protofibrils. Further investigation into the binding patterns of the six tracers to the CTE tau protofibrils showed that 18F-CBD-2115 and 18F-PM-PBB3 have a high number of H-bonds and hydrophobic contacts with tau protofibrils, resulting in strong hydrogen bonding and hydrophobic interactions; 18F-flortaucipir/18F-PI-2620 and 18F-PI-2620/18F-RO-948 form more intense π-π and cation-π interactions with tau protofibrils, respectively. Subsequently, we conducted a detailed analysis of the binding mechanism of 18F-PM-PBB3 to CTE tau protofibrils. The benzothiazole ring of 18F-PM-PBB3 exhibits stronger π-π stacking and cation-π interactions with tau protofibrils than the pyridine ring and forms a more concentrated T-shaped π-π stacking pattern. This study contributes to understanding the binding mechanism of PET tracers to CTE tau protofibrils and provides new insights into the design of potential novel tracers.

6.
Neurotoxicology ; 95: 94-106, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669621

RESUMO

OBJECTIVE: To explore the relationship between the proinflammatory factor high-mobility group box 1 (HMGB1) and glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the development of epilepsy. METHODS: Thalamic reticular nucleus (TRN) slices were treated with kainic acid (KA) to simulate seizures. Action potentials and spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded within TRN slices using whole-cell patch clamp techniques. The translocation of HMGB1 was detected by immunofluorescence. The HMGB1/TLR4 signaling pathway and its downstream inflammatory factors (IL-1ß and NF-κB) were detected by RTPCR, Western blot and ELISA. RESULTS: KA-evoked spikings were observed in TRN slices and blocked by perampanel. sIPSCs in the TRN were enhanced by KA and reduced by perampanel. The translocation of HMGB1 in the TRN was promoted by KA and inhibited by perampanel. The expression of the HMGB1/TLR4 signaling pathway was promoted by KA and suppressed by perampanel. CONCLUSION: KA induced hyperexcitability activates the HMGB1/TLR4 pathway, which potentially leading to neuroinflammation in epilepsy.


Assuntos
Epilepsia , Proteína HMGB1 , Humanos , Ácido Caínico/toxicidade , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Receptores de AMPA/metabolismo
7.
Nat Commun ; 13(1): 5561, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151112

RESUMO

Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics. It has been challenging to assess mRNA packaging characteristics in LNPs, including payload distribution and capacity, which are critical to understanding structure-property-function relationships for further carrier development. Here, we report a method based on the multi-laser cylindrical illumination confocal spectroscopy (CICS) technique to examine mRNA and lipid contents in LNP formulations at the single-nanoparticle level. By differentiating unencapsulated mRNAs, empty LNPs and mRNA-loaded LNPs via coincidence analysis of fluorescent tags on different LNP components, and quantitatively resolving single-mRNA fluorescence, we reveal that a commonly referenced benchmark formulation using DLin-MC3 as the ionizable lipid contains mostly 2 mRNAs per loaded LNP with a presence of 40%-80% empty LNPs depending on the assembly conditions. Systematic analysis of different formulations with control variables reveals a kinetically controlled assembly mechanism that governs the payload distribution and capacity in LNPs. These results form the foundation for a holistic understanding of the molecular assembly of mRNA LNPs.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
8.
Biochem Biophys Res Commun ; 630: 133-142, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36155059

RESUMO

The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a key role in the pathological process of atherosclerosis (AS), and TRPM7 is involved in this process. In this study, we verified whether circRNAs participate in the phenotypic transformation of VSMCs by regulating TRPM7 in AS. The RNA-sequencing data of atherosclerosis were downloaded and analysed from the GEO database. Only hsa_circ_0021155 related to TRPM7 was differentially expressed in AS. circRNA distribution and expression were observed via FISH and PCR. CCK8, scratch test and Transwell assay were used to observe the proliferation and migration of cells. Western blot was performed to examine changes in α-actin, calponin, SMMHC and TRPM7 proteins. The expression of hsa_circ_0021155 against has-miR-4459/miR-3689c was verified via PCR. The ceRNA relationship of TPRM7-miR4459-circ0021155 was verified via dual luciferase assay, and the effects of miR4459 mimic/inhibitor on the proliferation of cells were further observed. The expression of hsa_circ_0021155 and OX-LDL was increased in VSMCs. hsa_circ_0021155 promoted the expression of TRPM7 and inhibited the protein expression of α-actin, calponin and SMMHC. In addition, it promoted the proliferation and migration of cells and inhibited the expression of miR-3689c and miR-4459 but did not affect miR-4756-5p. The dual luciferase assay showed that circ0021155-miR4459-TRPM7 mRNA was highly compatible and could be mutually regulated by a ceRNA network. In conclusion, hsa_circ_0021155 regulates the proliferation, migration and phenotype transformation of VSMCs induced by OX-LDL via the miR-4459/TRPM7 axis. hsa_circ_0021155 and TRPM7 may offer novel therapeutic targets for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Canais de Cátion TRPM , Actinas/metabolismo , Apoptose/genética , Aterosclerose/genética , Aterosclerose/patologia , Movimento Celular/genética , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , RNA Circular/genética , RNA Mensageiro , Canais de Cátion TRPM/genética
9.
Mycology ; 13(3): 185-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938083

RESUMO

Ophiocordyceps sinensis is a well-known entomogenous fungus with its fruiting bodies or cultural mycelium as food and herbal medicines in Asia. While metabolites which could responsible for its potent pharmaceutical effects has long remained to be elucidated. In this work, chemical investigation on the solid culture of O. sinensis strain LY34 led to the discovery of six digalactosyldiacylglycerols (DGDGS, 1-6) including one new. The structure of compound 1 was determined based on the comprehensive spectra analysis, including NMR, MSn, IR, and chemical derivatisation. Bioactivity studies showed a weak cytotoxicity of compounds 1-6 against 293 T cell and medium anti-inflammatory activity of compounds 1 and 2 on Raw 264.7 cell. The discovery of DGDGs in O. sinensis provides new insight into the pharmacologically active substances.

10.
Cell Biochem Funct ; 39(7): 908-920, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34296452

RESUMO

Increasing attention has been paid on the application of biodegradable materials such as magnesium and its alloys in neuron repair. AZ91D magnesium alloy coated with carbon nanotubes (CNTs) and/or calcium phosphate (CaP)/chitosan (CS) was fabricated in this study. To evaluate the bioactivity of these AZ91D-based composites, the extracts were prepared by immersing samples in modified simulated body fluid (m-SBF) for 0, 2, 8, 16, 24, 34, 44, 60, or 90 days. Immunofluorescence staining for neuronal class III ß-tubulin (TUJ1) revealed that both CNTs-CaP/CS-AZ91D and CaP/CS-AZ91D extracts promoted axon outgrowth of dorsal root ganglia (DRG) neurons, accompanied with increased expression of phosphorylated focal adhesion kinase (p-FAK) and growth associated protein-43 (GAP-43). Besides, the extracts increased the expression and the release of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). ERK signalling was activated in DRG neurons after treating with either CNTs-CaP/CS-AZ91D or CaP/CS-AZ91D extracts, and its inhibition with U0126 counteracted the beneficial effects of these extracts on DRG neuron. Overall, the extracts from these AZ91D-based composites might promote DRG neuron growth via activating ERK signalling pathway. Notably, CNTs-CaP/CS-AZ91D extracts showed a better promoting effect on neuron growth than CaP/CS-AZ91D. Assessment of ion elements showed that the addition of CNTs coating enhanced magnesium corrosion resistance and reduced the deposition of calcium and phosphorus on the surface of CaP/CS-AZ91D alloy. These findings demonstrate that CNTs-CaP/CS-AZ91D likely provide a more suitable environment for neuron growth, which suggests a potential implantable biomaterial for the treatment of nerve injury. SIGNIFICANCE: AZ91D magnesium alloy coated with carbon nanotubes (CNTs) and/or calcium phosphate (CaP)/chitosan (CS) was fabricated and their immersion extracts were prepared using modified simulated body fluid in this study. Both extracts from CNTs-CaP/CS and CaP/CS-coated AZ91D magnesium alloy promotes rat dorsal root ganglia (DRG) neuron growth via activating ERK signalling pathway. Notably, the addition of CNTs improves the performance of CaP/CS-AZ91D. For the first time, our research demonstrates that CNTs-CaP/CS-AZ91D likely provide a suitable environment for neuron growth, suggesting these AZ91D-based composites as potential implantable biomaterials for the treatment of nerve injury.


Assuntos
Ligas/farmacologia , Fosfatos de Cálcio/farmacologia , Quitosana/farmacologia , Magnésio/farmacologia , Nanotubos de Carbono/química , Ligas/química , Ligas/isolamento & purificação , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/isolamento & purificação , Quitosana/química , Quitosana/isolamento & purificação , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Magnésio/química , Magnésio/isolamento & purificação , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
Biomed Res Int ; 2020: 4710780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178826

RESUMO

BACKGROUND: CircRNAs are noncoding RNA molecules that have recently been described and shown to regulate miRNA functionality. While recent studies have suggested such circRNAs to be associated with pain related diseases in humans, no comprehensive migraine-related circRNA profiles have been generated, and there is currently no clear understanding of whether they can serve as regulators of migraine pathology. METHODS: We initially conducted a circRNA microarray analysis of the plasma of migraine patients and healthy controls. Based upon these data, we then selected 8 differentially expressed circRNAs and confirmed their expression in more migraine patient plasma samples via real-time PCR. We then performed functional and pathway enrichment analyses. Lastly, using a robust rank aggregation approach, we constructed a ceRNA network according to predicted circRNA-miRNA and miRNA-mRNA pairs in these migraine patient samples. RESULTS: We were able to detect 2039 circRNAs in our patient samples, with 794 of 1245 these circRNAs being up- and downregulated in migraine patients relative to controls, respectively (fold change ≥ 1.5, p < 0.01). A qRT-PCR analysis confirmed that the expression of hsa_circRNA_100236, hsa_circRNA_102413, and hsa_circRNA_000367 was significantly enhanced in migraine patients, whereas the expression of hsa_circRNA_103809, hsa_circRNA_103670, and hsa_circRNA_101833 was significantly reduced in these individuals relative to healthy controls. We found these differentially regulated circRNAs to be associated with numerous predicted biological processes, with enrichment analyses suggesting that they may modulate the PI3K-Akt signaling so as to promote inflammation to drive migraine development. However, further research will be needed to formally test these mechanistic possibilities and to validate these circRNAs as potential biomarkers of migraine patients. CONCLUSIONS: Our results offer new potential insights into the mechanistic basis of this condition and suggest that hsa_circRNA_000367 and hsa_circRNA_102413 may offer value as regulators of migraine pathology.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transtornos de Enxaqueca/genética , RNA Circular/genética , Regulação para Baixo/genética , Ontologia Genética , Redes Reguladoras de Genes , Humanos , RNA Circular/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/genética
12.
Front Neurol ; 11: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265817

RESUMO

Background: Vestibular migraine (VM) is the most common cause of spontaneous vertigo with no specific physical and laboratory examinations, and is an under-recognized entity with substantial burden for the individual and the society. In this study, by observing the brainstem auditory evoked potential (BAEP) and cognitive function of VM patients, the possible laboratory diagnostic indicators of VM and the influence of disease on cognitive function were discussed. Method: The study included 78 VM patients, 76 migraine patients, and 79 healthy individuals. The age, gender, and other clinical history of the three groups matched. All participants underwent BAEP examinations, in which patients in the migraine group and outpatients of the VM group were in the interictal period, and inpatients in the VM group were examined during episodes, while all patients tested for the Addenbrooke's cognitive examination-revised (ACE-R) scale were in the interictal period. The differences in BAEP and ACE-R scores between the three groups of members and their relationship with the clinical features of VM patients were analyzed. Result: The peak latency of I, III, and V wave in the BAEP of the VM group was longer than that of the migraine group and the control group (p < 0.05). The peak latency of V wave in the BAEP of the migraine group was longer than that of the control group (p < 0.05). The ACE-R of the VM group scored lower than the migraine group in terms of language fluency and language (p < 0.05), and lower than the control group in terms of total score, language fluency, language, and visuospatial (p < 0.05); and the ACE-R of the migraine group scored lower than the control group in the total score and visuospatial (p < 0.05). Conclusion: Migraine patients have brainstem dysfunction, and VM patients have more severe brainstem dysfunction than migraine patients, suggesting that VM patients have both central nervous system damage and peripheral nerve damage. Migraine patients have cognitive impairment, while cognitive impairment in VM patients is more severe than in migraine patients.

13.
Anal Cell Pathol (Amst) ; 2020: 8895449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415067

RESUMO

BACKGROUND: Oxidized low-density lipoprotein (Ox-LDL) is a crucial pathogenic factor for vascular diseases, which can induce the proliferation of vascular smooth muscle cells (VSMCs). Genistein is the main component of soybean isoflavone. Genistein has a variety of pharmacological properties in the treatment of vascular diseases and a promising clinical application. Large-conductance calcium-activated potassium (BKCa) channels are the primary type of potassium channels in VSMCs, which regulate various biological functions of VSMCs. However, whether genistein exerts an antiproliferation effect on Ox-LDL-stimulated VSMCs remains unclear. The current study is aimed at elucidating the effect of genistein on the Ox-LDL-stimulated proliferation of VSMCs and its possible molecular mechanism, especially the electrophysiological mechanism related to BKCa channels. METHODS: Monoculture VSMC was obtained by an acute enzyme-dispersing method. The proliferation of cells was measured by CCK-8, cell cycle, and proliferating cell nuclear antigen (PCNA) expression. The BKCa whole-cell currents were measured by patch-clamp. RESULTS: Ox-LDL treatment induced the proliferation of VSMCs, upregulated the BKCa protein expression, and increased the density of BKCa currents, while genistein significantly inhibited these effects caused by Ox-LDL. BKCa channels exerted a regulatory role in the proliferation of VSMCs in response to Ox-LDL. The inhibition of BKCa channels suppressed Ox-LDL-stimulated VSMC proliferation, while the activation of BKCa channels showed the opposite effect. Moreover, genistein suppressed the activity of BKCa, including protein expression and current density in a protein tyrosine kinase- (PTK-) dependent manner. CONCLUSION: This study demonstrated that genistein inhibited the Ox-LDL-mediated proliferation of VSMCs by blocking the cell cycle progression; the possible molecular mechanism may be related to PTK-dependent suppression of BKCa channels. Our results provided novel ideas for the application of genistein in the treatment of vascular diseases and proposed a unique insight into the antiproliferative molecular mechanism of genistein.


Assuntos
Genisteína/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Lipoproteínas LDL/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Isoflavonas/farmacologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos Wistar , Tirfostinas/farmacologia , Vanadatos/farmacologia
14.
Ann Transl Med ; 7(24): 800, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042816

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative condition that affects more than 15 million individuals globally. However, a predictive molecular biomarker to distinguish the different stages of AD patients is still lacking. METHODS: A weighted gene co-expression network analysis (WGCNA) was employed to systematically identify the co-expressed gene modules and hub genes connected with AD development based on a microarray dataset (GSE1297) from the Gene Expression Omnibus (GEO) database. An independent validation cohort, GSE28146, was utilized to assess the diagnostic efficiency for distinguishing the different stages of AD. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting analysis were applied to examine the mRNA and protein level of GRIK1, respectively, in AD mice established with the expression of mutant amyloid precursor protein and wild type mice. The morphology of neurons was investigated using phalloidin staining. RESULTS: We identified 16 co-expressed genes modules, with the pink module showing significant association with all three disease statuses [neurofibrillary tangle (NFT), BRAAK, and mini-mental state examination (MMSE)]. Enrichment analysis specified that these modules were enriched in phosphatidylinositol 3-kinase (PI3K) signaling and ion transmembrane transport. The validation cohort GSE28146 confirmed that six hub genes in the pink module could distinguish severe and non-severe AD patients [area under the curve (AUC) >0.7]. These hub genes might act as a biomarker and help to differentiate diverse pathological stages for AD patients. Finally, one of the hubs, GRIK1, was validated by an animal AD model. The mRNA and protein level of GRIK1 in the AD hippocampus was increased compared with the control group (NC) hippocampus. Phalloidin staining showed that dendritic length of the GRIK1 pCDNA3.1 group was shorter than that of the NC group. CONCLUSIONS: In summary, we systematically recognized co-expressed gene modules and genes related to AD stages, which gave insight into the fundamental mechanisms of AD progression and revealed some probable targets for the treatment of AD.

15.
Int J Clin Exp Pathol ; 12(5): 1658-1665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31933984

RESUMO

More and more evidence shows that the OX40/OX40L interaction plays a critical role in the development of atherosclerosis. However, it is not known whether genistein, a natural phytoestrogen with anti-inflammatory effects found in soybean extract, can prevent experimental atherosclerosis by regulating the OX40/OX40L pathway. This study aims to explore the effect and the underlying mechanisms of genistein on the development of atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. ApoE-/- mice, fed an atherogenic diet, were treated with genistein (15 and 45 mg kg-1 day-1). In vitro studies were carried out in oxidized LDL (oxLDL)-stimulated SMCs. Our results show that genistein treatment remarkably reduced atherosclerotic plaque formation and reduced the serum levels of pro-inflammatory cytokines in ApoE-/- mice. Also, genistein promotes plaque stability in ApoE-/- mice, characterized by smaller necrotic core areas of atherosclerotic plaques and reduced MMP-9 protein expression in primary smooth muscle cells (SMCs). Furthermore, when mRNA expression and the protein expression of OX40 were significantly increased, they were inhibited by genistein in response to an atherogenic diet. Notably, ApoE-/- mice with an anti-OX40L antibody presented a significant decrease in atherosclerotic lesion formation, which has no further beneficial effects when combined with genistein. These results suggest that genistein potentially has atheroprotective effects that involve the inhibition of the OX40/OX40L pathway, which could be used to prevent and treat atherosclerosis.

17.
Hum Mol Genet ; 27(4): 625-637, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29294000

RESUMO

Paroxysmal kinesigenic dyskinesia (PKD) is a heterogeneous movement disorder characterized by recurrent dyskinesia attacks triggered by sudden movement. PRRT2 has been identified as the first causative gene of PKD. However, it is only responsible for approximately half of affected individuals, indicating that other loci are most likely involved in the etiology of this disorder. To explore the underlying causative gene of PRRT2-negative PKD, we used a combination strategy including linkage analysis, whole-exome sequencing and copy number variations analysis to detect the genetic variants within a family with PKD. We identified a linkage locus on chromosome 12 (12p13.32-12p12.3) and detected a novel heterozygous mutation c.956 T>G (p.319 L>R) in the potassium voltage-gated channel subfamily A member 1, KCNA1. Whole-exome sequencing in another 58 Chinese patients with PKD who lacked mutations in PRRT2 revealed another novel mutation in the KCNA1 gene [c.765 C>A (p.255 N>K)] within another family. Biochemical analysis revealed that the L319R mutant accelerated protein degradation via the proteasome pathway and disrupted membrane expression of the Kv1.1 channel. Electrophysiological examinations in transfected HEK293 cells showed that both the L319R and N255K mutants resulted in reduced potassium currents and respective altered gating properties, with a dominant negative effect on the Kv1.1 wild-type channel. Our study suggests that these mutations in KCNA1 cause the Kv1.1 channel dysfunction, which leads to familial PKD. The current study further extended the genotypic spectrum of this disorder, indicating that Kv1.1 channel dysfunction maybe one of the underlying defects in PKD.


Assuntos
Distonia/genética , Canal de Potássio Kv1.1/genética , Adulto , Povo Asiático , Variações do Número de Cópias de DNA , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem
18.
Cell Physiol Biochem ; 40(6): 1274-1288, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997885

RESUMO

BACKGROUND: Streptozotocin (STZ) has served as an agent to generate an Alzheimer's disease (AD) model in rats, while edaravone (EDA), a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. METHODS: Through measures of evoked excitatory postsynaptic currents (eEPSCs), AMPAR-mediated eEPSCs (eEPSCsAMPA), evoked inhibitory postsynaptic currents (eIPSCs), evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR) and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR), it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. RESULTS: Our results showed that STZ (1000 µM) significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM) attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. CONCLUSION: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.


Assuntos
Antipirina/análogos & derivados , Região CA1 Hipocampal/citologia , Células Piramidais/fisiologia , Estreptozocina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Antipirina/farmacologia , Edaravone , Capacitância Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos Wistar , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
19.
Neurotoxicology ; 57: 75-86, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637609

RESUMO

The purpose of this study was to investigate the acute and chronic effects of streptozotocin (STZ) upon synaptic transmission and the effects of edaravone (EDA, a free radical scavenger) on STZ-induced electrophysiological changes in CA1 pyramidal neurons of rat hippocampal slices. To accomplish this goal, spontaneous excitatory postsynaptic current (sEPSC), miniature excitatory postsynaptic current (mEPSC), spontaneous inhibitory postsynaptic current (sIPSC) and miniature inhibitory postsynaptic current (mIPSC) were recorded within hippocampal slices using whole-cell patch clamp techniques. The results showed that the amplitudes and frequencies of sEPSC, mEPSC, sIPSC and mIPSC were inhibited by 1000µM STZ, while treatment of EDA (1000µM) attenuated these STZ-induced changes. The degree of these neurotoxic effects of STZ and effects of EDA increased as a function of drug duration as assessed at 2, 4 or 8h of exposure. Taken together, our results demonstrate that STZ induces neurotoxicity within these hippocampal slices through its capacity to alter synaptic transmission and these STZ-induced alterations in electrophysiological responses are attenuated by EDA.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Região CA1 Hipocampal/citologia , Células Piramidais/efeitos dos fármacos , Estreptozocina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
20.
FEBS Lett ; 590(4): 520-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26900082

RESUMO

Transient receptor potential melastatin 7 (TRPM7) plays a key role in the pathophysiological response of multiple cell types. However, the role of TRPM7 channels in ox-LDL-induced proliferation and migration of VSMC remains unclear. This study used the thoracic aorta VSMCs to explore the effects of ox-LDL on cell proliferation and migration and to investigate the underlying molecular mechanisms and signaling pathways. Data demonstrated that ox-LDL significantly increased TRPM7 activity, and induced VSMC proliferation and migration. VSMC proliferation and migration were inhibited by nonspecific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7. Furthermore, the phosphorylation of ERK1/2 and MEK1/2 associated with cell proliferation and migration decreased in TRPM7-deficient VSMC. Therefore, TRPM7 may constitute a useful target for the treatment of atherosclerosis.


Assuntos
Movimento Celular , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Canais de Cátion TRPM/metabolismo , Animais , Aorta Torácica/citologia , Aterosclerose/metabolismo , Compostos de Boro/farmacologia , Proliferação de Células , Células Cultivadas , Sistema de Sinalização das MAP Quinases , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...