Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vision Res ; 222: 108447, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906036

RESUMO

Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.

3.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755126

RESUMO

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Assuntos
Galinhas , Plumas , Tentilhões , Animais , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Galinhas/genética , Tentilhões/genética , Regulação da Expressão Gênica no Desenvolvimento , Matriz Extracelular/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Via de Sinalização Wnt , Queratinas/metabolismo , Queratinas/genética , Evolução Biológica , Morfogênese/genética
4.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993177

RESUMO

The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.


Assuntos
Fixação de Nitrogênio , Nitrogenase , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Filogenia
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975951

RESUMO

Transcription factor binding sites (TFBSs) are essential for gene regulation, but the number of known TFBSs remains limited. We aimed to discover and characterize unknown TFBSs by developing a computational pipeline for analyzing ChIP-seq (chromatin immunoprecipitation followed by sequencing) data. Applying it to the latest ENCODE ChIP-seq data for human and mouse, we found that using the irreproducible discovery rate as a quality-control criterion resulted in many experiments being unnecessarily discarded. By contrast, the number of motif occurrences in ChIP-seq peak regions provides a highly effective criterion, which is reliable even if supported by only one experimental replicate. In total, we obtained 2,058 motifs from 1,089 experiments for 354 human TFs and 163 motifs from 101 experiments for 34 mouse TFs. Among these motifs, 487 have not previously been reported. Mapping the canonical motifs to the human genome reveals a high TFBS density ±2 kb around transcription start sites (TSSs) with a peak at -50 bp. On average, a promoter contains 5.7 TFBSs. However, 70% of TFBSs are in introns (41%) and intergenic regions (29%), whereas only 12% are in promoters (-1 kb to +100 bp from TSSs). Notably, some TFs (e.g., CTCF, JUN, JUNB, and NFE2) have motifs enriched in intergenic regions, including enhancers. We inferred 142 cobinding TF pairs and 186 (including 115 completely) tethered binding TF pairs, indicating frequent interactions between TFs and a higher frequency of tethered binding than cobinding. This study provides a large number of previously undocumented motifs and insights into the biological and genomic features of TFBSs.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Motivos de Nucleotídeos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Humanos , Camundongos , Regiões Promotoras Genéticas
6.
Mol Biol Evol ; 38(7): 2715-2731, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33674876

RESUMO

SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2-S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.


Assuntos
COVID-19 , Resistência à Doença/genética , Peptidil Dipeptidase A , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/imunologia , Chlorocebus aethiops , Humanos , Macaca mulatta , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia
7.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817425

RESUMO

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Translocador 1 do Nucleotídeo Adenina/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cloroplastos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Milhetes/genética , Milhetes/metabolismo , Organogênese Vegetal/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma
8.
PLoS One ; 15(5): e0233492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469948

RESUMO

Glycosylation can affect various protein properties such as stability, biological activity, and immunogenicity. To produce human therapeutic proteins, a host that can produce glycoproteins with correct glycan structures is required. Microbial expression systems offer economical, rapid and serum-free production and are more amenable to genetic manipulation. In this study, we developed a protocol for CRISPR/Cas9 multiple gene knockouts and knockins in Kluyveromyces marxianus, a probiotic yeast with a rapid growth rate. As hyper-mannosylation is a common problem in yeast, we first knocked out the α-1,3-mannosyltransferase (ALG3) and α-1,6-mannosyltransferase (OCH1) genes to reduce mannosylation. We also knocked out the subunit of the telomeric Ku domain (KU70) to increase the homologous recombination efficiency of K. marxianus. In addition, we knocked in the MdsI (α-1,2-mannosidase) gene to reduce mannosylation and the GnTI (ß-1,2-N-acetylglucosaminyltransferase I) and GnTII genes to produce human N-glycan structures. We finally obtained two strains that can produce low amounts of the core N-glycan Man3GlcNAc2 and the human complex N-glycan Man3GlcNAc4, where Man is mannose and GlcNAc is N-acetylglucosamine. This study lays a cornerstone of glycosylation engineering in K. marxianus toward producing human glycoproteins.


Assuntos
Kluyveromyces/genética , Kluyveromyces/metabolismo , Engenharia Metabólica/métodos , Polissacarídeos/biossíntese , Polissacarídeos/química , Biotecnologia , Sistemas CRISPR-Cas , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Fúngicos , Glicoproteínas/biossíntese , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Humanos , Manosidases/genética , Manosidases/metabolismo , Manosiltransferases/antagonistas & inibidores , Manosiltransferases/genética , Manosiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Proc Natl Acad Sci U S A ; 116(38): 19009-19018, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484772

RESUMO

How negative selection, positive selection, and population size contribute to the large variation in nucleotide substitution rates among RNA viruses remains unclear. Here, we studied the ratios of nonsynonymous-to-synonymous substitution rates (dN/dS) in protein-coding genes of human RNA and DNA viruses and mammals. Among the 21 RNA viruses studied, 18 showed a genome-average dN/dS from 0.01 to 0.10, indicating that over 90% of nonsynonymous mutations are eliminated by negative selection. Only HIV-1 showed a dN/dS (0.31) higher than that (0.22) in mammalian genes. By comparing the dN/dS values among genes in the same genome and among species or strains, we found that both positive selection and population size play significant roles in the dN/dS variation among genes and species. Indeed, even in flaviviruses and picornaviruses, which showed the lowest ratios among the 21 species studied, positive selection appears to have contributed significantly to dN/dS We found the view that positive selection occurs much more frequently in influenza A subtype H3N2 than subtype H1N1 holds only for the hemagglutinin and neuraminidase genes, but not for other genes. Moreover, we found no support for the view that vector-borne RNA viruses have lower dN/dS ratios than non-vector-borne viruses. In addition, we found a correlation between dN and dS, implying a correlation between dN and the mutation rate. Interestingly, only 2 of the 8 DNA viruses studied showed a dN/dS < 0.10, while 4 showed a dN/dS > 0.22. These observations increase our understanding of the mechanisms of RNA virus evolution.


Assuntos
Evolução Molecular , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Seleção Genética , Proteínas Virais/genética , Animais , Genoma Viral , Humanos , Mamíferos , Taxa de Mutação
10.
Proc Natl Acad Sci U S A ; 116(8): 3091-3099, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718437

RESUMO

Time-series transcriptomes of a biological process obtained under different conditions are useful for identifying the regulators of the process and their regulatory networks. However, such data are 3D (gene expression, time, and condition), and there is currently no method that can deal with their full complexity. Here, we developed a method that avoids time-point alignment and normalization between conditions. We applied it to analyze time-series transcriptomes of developing maize leaves under light-dark cycles and under total darkness and obtained eight time-ordered gene coexpression networks (TO-GCNs), which can be used to predict upstream regulators of any genes in the GCNs. One of the eight TO-GCNs is light-independent and likely includes all genes involved in the development of Kranz anatomy, which is a structure crucial for the high efficiency of photosynthesis in C4 plants. Using this TO-GCN, we predicted and experimentally validated a regulatory cascade upstream of SHORTROOT1, a key Kranz anatomy regulator. Moreover, we applied the method to compare transcriptomes from maize and rice leaf segments and identified regulators of maize C4 enzyme genes and RUBISCO SMALL SUBUNIT2 Our study provides not only a powerful method but also novel insights into the regulatory networks underlying Kranz anatomy development and C4 photosynthesis.


Assuntos
Redes Reguladoras de Genes/genética , Fotossíntese/genética , Folhas de Planta/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Fotoperíodo , Proteínas de Plantas , Ribulose-Bifosfato Carboxilase/genética , Zea mays/genética
11.
Mol Biol Evol ; 36(3): 447-457, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590689

RESUMO

Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event. We tested this by examining the retinal cones of a basal teleost group, the osteoglossomorphs. Surprisingly, this lineage has lost the typical vertebrate green-sensitive RH2 opsin gene and, instead, has a duplicate of the LWS opsin that is green sensitive. This parallels the situation in mammalian evolution in which the RH2 opsin gene was lost in basal mammals and a green-sensitive opsin re-evolved in Old World, and independently in some New World, primates from an LWS opsin gene. Another group of fish, the characins, possess green-sensitive LWS cones. Phylogenetic analysis shows that the evolution of green-sensitive LWS opsins in these two teleost groups derives from a common ancestral LWS opsin that acquired green sensitivity. Additionally, the nocturnally active African weakly electric fish (Mormyroideae), which are osteoglossomorphs, show a loss of the SWS1 opsin gene. In comparison with the independently evolved nocturnally active South American weakly electric fish (Gymnotiformes) with a functionally monochromatic LWS opsin cone retina, the presence of SWS2, LWS, and LWS2 cone opsins in mormyrids suggests the possibility of color vision.


Assuntos
Opsinas dos Cones/genética , Peixe Elétrico/genética , Sequência de Aminoácidos , Animais , Opsinas dos Cones/química , Células Fotorreceptoras de Vertebrados/química , Filogenia , Sintenia
12.
Sci Rep ; 8(1): 7305, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743485

RESUMO

Kluyveromyces marxianus, a probiotic yeast, is important in industrial applications because it has a broad substrate spectrum, a rapid growth rate and high thermotolerance. To date, however, there has been little effort in its genetic engineering by the CRISPR/Cas9 system. Therefore, we aimed at establishing the CRISPR/Cas9 system in K. marxianus and creating stable haploid strains, which will make genome engineering simpler. First, we predicted the genome-wide target sites of CRISPR/Cas9 that have been conserved among the eight sequenced genomes of K. marxianus strains. Second, we established the CRISPR/Cas9 system in the K. marxianus 4G5 strain, which was selected for its high thermotolerance, rapid growth, a pH range of pH3-9, utilization of xylose, cellobiose and glycerol, and toxin tolerance, and we knocked out its MATα3 to prevent mating-type switching. Finally, we used K. marxianus MATα3 knockout diploid strains to obtain stable haploid strains with a growth rate comparable to that of the diploid 4G5 strain. In summary, we present the workflow from identifying conserved CRISPR/Cas9 targets in the genome to knock out the MATα3 genes in K. marxianus to obtain a stable haploid strain, which can facilitate genome engineering applications.


Assuntos
Sistemas CRISPR-Cas/genética , Genômica , Haploidia , Kluyveromyces/genética , Sequência Conservada , Técnicas de Inativação de Genes , Kluyveromyces/fisiologia , Esporos Fúngicos/fisiologia , Transformação Genética
13.
Sci Rep ; 7(1): 15568, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138475

RESUMO

We studied the evolution of opsin genes in 59 ray-finned fish genomes. We identified the opsin genes and adjacent genes (syntenies) in each genome. Then we inferred the changes in gene copy number (N), syntenies, and tuning sites along each phylogenetic branch during evolution. The Exorh (rod opsin) gene has been retained in 56 genomes. Rh1, the intronless rod opsin gene, first emerged in ancestral Actinopterygii, and N increased to 2 by the teleost-specific whole genome duplication, but then decreased to 1 in the ancestor of Neoteleostei fishes. For cone opsin genes, the rhodopsin-like (Rh2) and long-wave-sensitive (LWS) genes showed great variation in N among species, ranging from 0 to 5 and from 0 to 4, respectively. The two short-wave-sensitive genes, SWS1 and SWS2, were lost in 23 and 6 species, respectively. The syntenies involving LWS, SWS2 and Rh2 underwent complex changes, while the evolution of the other opsin gene syntenies was much simpler. Evolutionary adaptation in tuning sites under different living environments was discussed. Our study provides a detailed view of opsin gene gains and losses, synteny changes and tuning site changes during ray-finned fish evolution.


Assuntos
Evolução Molecular , Peixes/genética , Opsinas/genética , Opsinas de Bastonetes/genética , Animais , Genoma/genética , Metagenômica , Opsinas/classificação , Filogenia , Opsinas de Bastonetes/classificação , Sintenia/genética
14.
Mol Biol Evol ; 33(11): 2769-2780, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27501942

RESUMO

Feathers, which are mainly composed of α- and ß-keratins, are highly diversified, largely owing to duplication and diversification of ß-keratin genes during bird evolution. However, little is known about the regulatory changes that contributed to the expressional diversification of ß-keratin genes. To address this issue, we studied transcriptomes from five different parts of chicken contour and flight feathers. From these transcriptomes we inferred ß-keratin enriched co-expression modules of genes and predicted transcription factors (TFs) of ß-keratin genes. In total, we predicted 262 TF-target gene relationships in which 56 TFs regulate 91 ß-keratin genes; we validated 14 of them by in vitro tests. A dual criterion of TF enrichment and "TF-target gene" expression correlation identified 26 TFs as the major regulators of ß-keratin genes. According to our predictions, the ancestral scale and claw ß-keratin genes have common and unique regulators, whereas most feather ß-keratin genes show chromosome-wise regulation, distinct from scale and claw ß-keratin genes. Thus, after expansion from the ß-keratin gene on Chr7 to other chromosomes, which still shares a TF with scale and claw ß-keratin genes, most feather ß-keratin genes have recruited distinct or chromosome-specific regulators. Moreover, our data showed correlated gene expression profiles, positive or negative, between predicted TFs and their target genes over the five studied feather regions. Therefore, regulatory divergences among feather ß-keratin genes have contributed to structural differences among different parts of feathers. Our study sheds light on how feather ß-keratin genes have diverged in regulation from scale and claw ß-keratin genes and among themselves.


Assuntos
Galinhas/genética , Plumas/fisiologia , Regulação da Expressão Gênica/genética , beta-Queratinas/genética , Animais , Evolução Biológica , Evolução Molecular , Plumas/metabolismo , Variação Genética , Família Multigênica , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , beta-Queratinas/metabolismo
15.
Sci Rep ; 6: 25164, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117388

RESUMO

Binding of a transcription factor (TF) to its DNA binding sites (TFBSs) is a critical step to initiate the transcription of its target genes. It is therefore interesting to know where the TFBSs of a gene are likely to locate in the promoter region. Here we studied the positional distribution of TFBSs in Arabidopsis thaliana, for which many known TFBSs are now available. We developed a method to identify the locations of TFBSs in the promoter sequences of genes in A. thaliana. We found that the distribution is nearly bell-shaped with a peak at 50 base pairs (bp) upstream of the transcription start site (TSS) and 86% of the TFBSs are in the region from -1,000 bp to +200 bp with respect to the TSS. Our distribution was supported by chromatin immunoprecipitation sequencing and microarray data and DNase I hypersensitive site sequencing data. When TF families were considered separately, differences in positional preference were observed between TF families. Our study of the positional distribution of TFBSs seems to be the first in a plant.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , DNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA de Plantas/química , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/química , Sítio de Iniciação de Transcrição
16.
Curr Opin Plant Biol ; 30: 1-10, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26828378

RESUMO

C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved a repertoire of C4 enzymes to enhance CO2 fixation. Second, C4 leaves have Kranz anatomy with a high vein density in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are not only functionally well differentiated, but also well-coordinated for rapid transport of photo-assimilates between the two types of photosynthetic cells. Recent comparative transcriptomic and anatomical analyses of C3 and C4 leaves have revealed early onset of C4-related processes in leaf development, suggesting that delayed mesophyll differentiation contributes to higher C4 vein density, and have identified some candidate regulators for the higher vein density in C4 leaves. Moreover, comparative transcriptomics of maize husk (C3) and foliar leaves (C4) has identified a cohort of candidate regulators of Kranz anatomy development. In addition, there has been major progress in the identification of transcription factor binding sites, greatly increasing our knowledge of gene regulation in plants.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Flaveria/citologia , Flaveria/genética , Flaveria/metabolismo , Magnoliopsida/citologia , Magnoliopsida/genética , Magnoliopsida/metabolismo , Modelos Biológicos , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética
17.
Proc Natl Acad Sci U S A ; 112(19): E2477-86, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918418

RESUMO

Maize is a major crop and a model plant for studying C4 photosynthesis and leaf development. However, a genomewide regulatory network of leaf development is not yet available. This knowledge is useful for developing C3 crops to perform C4 photosynthesis for enhanced yields. Here, using 22 transcriptomes of developing maize leaves from dry seeds to 192 h post imbibition, we studied gene up- and down-regulation and functional transition during leaf development and inferred sets of strongly coexpressed genes. More significantly, we developed a method to predict transcription factor binding sites (TFBSs) and their cognate transcription factors (TFs) using genomic sequence and transcriptomic data. The method requires not only evolutionary conservation of candidate TFBSs and sets of strongly coexpressed genes but also that the genes in a gene set share the same Gene Ontology term so that they are involved in the same biological function. In addition, we developed another method to predict maize TF-TFBS pairs using known TF-TFBS pairs in Arabidopsis or rice. From these efforts, we predicted 1,340 novel TFBSs and 253 new TF-TFBS pairs in the maize genome, far exceeding the 30 TF-TFBS pairs currently known in maize. In most cases studied by both methods, the two methods gave similar predictions. In vitro tests of 12 predicted TF-TFBS interactions showed that our methods perform well. Our study has significantly expanded our knowledge on the regulatory network involved in maize leaf development.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Zea mays/genética , Motivos de Aminoácidos , Arabidopsis/genética , Sítios de Ligação , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma de Planta , Família Multigênica , Oryza/genética , Fotossíntese , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
18.
BMC Genomics ; 15: 818, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261191

RESUMO

BACKGROUND: Transcription factors (TFs) contain DNA-binding domains (DBDs) and regulate gene expression by binding to specific DNA sequences. In addition, there are proteins, called transcription coregulators (TCs), which lack DBDs but can alter gene expression through interaction with TFs or RNA Polymerase II. Therefore, it is interesting to identify and classify the TFs and TCs in a genome. In this study, maize (Zea mays) and foxtail millet (Setaria italica), two important species for the study of C4 photosynthesis and kranz anatomy, were selected. RESULT: We conducted a comprehensive genome-wide annotation of TFs and TCs in maize B73 and in two strains of foxtail millet, Zhang gu and Yugu1, and classified them into families. To gain additional support for our predictions, we searched for their homologous genes in Arabidopsis or rice and studied their gene expression level using RNA-seq and microarray data. We identified many new TF and TC families in these two species, and described some evolutionary and functional aspects of the 9 new maize TF families. Moreover, we detected many pseudogenes and transposable elements in current databases. In addition, we examined tissue expression preferences of TF and TC families and identified tissue/condition-specific TFs and TCs in maize and millet. Finally, we identified potential C4-related TF and TC genes in maize and millet. CONCLUSIONS: Our results significantly expand current TF and TC annotations in maize and millet. We provided supporting evidence for our annotation from genomic and gene expression data and identified TF and TC genes with tissue preference in expression. Our study may facilitate the study of regulation of gene expression, tissue morphogenesis, and C4 photosynthesis in maize and millet. The data we generated in this study are available at http://sites.google.com/site/jjlmmtf.


Assuntos
Perfilação da Expressão Gênica , Genômica , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Setaria (Planta)/genética , Fatores de Transcrição/genética , Zea mays/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...