Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 58(16): 7176-7185, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606801

RESUMO

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.

4.
AJR Am J Roentgenol ; 222(4): e2330603, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38265001

RESUMO

BACKGROUND. Breast cancer HER2 expression has been redefined using a three-tiered system, with HER2-zero cancers considered ineligible for HER2-targeted therapy, HER2-low cancers considered candidates for novel HER2-targeted drugs, and HER2-positive cancers treated with traditional HER2-targeted medications. OBJECTIVE. The purpose of this study was to assess MRI radiomics models for a three-tiered classification of HER2 expression of breast cancer. METHODS. This retrospective study included 592 patients with pathologically confirmed breast cancer (mean age, 47.0 ± 18.0 [SD] years) who underwent breast MRI at either of a health system's two hospitals from April 2016 through June 2022. Three-tiered HER2 status was pathologically determined. Radiologists assessed the conventional MRI features of tumors and manually segmented the tumors on multiparametric sequences (T2-weighted images, DWI, ADC maps, and T1-weighted delayed contrast-enhanced images) to extract radiomics features. Least absolute shrinkage and selection operator analysis was used to develop two radiomics signatures, to differentiate HER2-zero cancers from HER2-low or HER2-positive cancers (task 1) as well as to differentiate HER2-low cancers from HER2-positive cancers (task 2). Patients from hospital 1 were randomly assigned to a discovery set (task 1: n = 376; task 2: n = 335) or an internal validation set (task 1: n = 161; task 2: n = 143); patients from hospital 2 formed an external validation set (task 1: n = 55; task 2: n = 50). Multivariable logistic regression analysis was used to create nomograms combining radiomics signatures with clinicopathologic and conventional MRI features. RESULTS. AUC, sensitivity, and specificity in the discovery, internal validation, and external validation sets were as follows: for task 1, 0.89, 99.4%, and 69.0%; 0.86, 98.6%, and 76.5%; and 0.78, 100.0%, and 0.0%, respectively; for task 2, 0.77, 93.8%, and 32.3%; 0.75, 92.9%, and 6.8%; and 0.77, 97.0%, and 29.4%, respectively. For task 1, no nomogram was created because no clinicopathologic or conventional MRI feature was associated with HER2 status independent of the MRI radiomics signature. For task 2, a nomogram including an MRI radiomics signature and three pathologic features (histologic grade of III, high Ki-67 index, and positive progesterone receptor status) that were independently associated with HER2-low expression had an AUC of 0.87, 0.83, and 0.80 in the three sets. CONCLUSION. MRI radiomics features were used to differentiate HER2-zero from HER2-low cancers or HER2-positives cancers as well as to differentiate HER2-low cancers from HER2-positive cancers. CLINICAL IMPACT. MRI radiomics may help select patients for novel or traditional HER2-targeted therapies, particularly those patients with ambiguous results of immunohistochemical staining results or limited access to fluorescence in situ hybridization.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Receptor ErbB-2/metabolismo , Adulto , Idoso , Diagnóstico Diferencial , Interpretação de Imagem Assistida por Computador/métodos , Radiômica
5.
Eur Radiol ; 34(4): 2546-2559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37672055

RESUMO

OBJECTIVES: To determine the value of conventional DWI, continuous-time random walk (CTRW), fractional order calculus (FROC), and stretched exponential model (SEM) in discriminating human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC). METHODS: This prospective study included 158 women who underwent DWI, CTRW, FROC, and SEM and were pathologically categorized into the HER2-zero-expressing group (n = 10), HER2-low-expressing group (n = 86), and HER2-overexpressing group (n = 62). Nine diffusion parameters, namely ADC, αCTRW, ßCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM of the primary tumor, were derived from four diffusion models. These diffusion metrics and clinicopathologic features were compared between groups. Logistic regression was used to determine the optimal diffusion metrics and clinicopathologic variables for classifying the HER2-expressing statuses. Receiver operating characteristic (ROC) curves were used to evaluate their discriminative ability. RESULTS: The estrogen receptor (ER) status, progesterone receptor (PR) status, and tumor size differed between HER2-low-expressing and HER2-overexpressing groups (p < 0.001 to p = 0.009). The αCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM were significantly lower in HER2-low-expressing BCs than those in HER2-overexpressing BCs (p < 0.001 to p = 0.01). Further multivariable logistic regression analysis showed that the αCTRW was the single best discriminative metric, with an area under the curve (AUC) being higher than that of ADC (0.802 vs. 0.610, p < 0.05); the addition of ER status, PR status, and tumor size to the αCTRW improved the AUC to 0.877. CONCLUSIONS: The αCTRW could help discriminate the HER2-low-expressing and HER2-overexpressing BCs. CLINICAL RELEVANCE STATEMENT: Human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC) might also benefit from the HER2-targeted therapy. Prediction of HER2-low-expressing BC or HER2-overexpressing BC is crucial for appropriate management. Advanced continuous-time random walk diffusion MRI offers a solution to this clinical issue. KEY POINTS: • Human epidermal receptor 2 (HER2)-low-expressing BC had lower αCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM values compared with HER2-overexpressing breast cancer. • The αCTRW was the single best diffusion metric (AUC = 0.802) for discrimination between the HER2-low-expressing and HER2-overexpressing breast cancers. • The addition of αCTRW to the clinicopathologic features (estrogen receptor status, progesterone receptor status, and tumor size) further improved the discriminative ability.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Feminino , Humanos , Neoplasias da Mama/patologia , Estudos Prospectivos , Receptores de Progesterona , Imagem de Difusão por Ressonância Magnética , Receptores de Estrogênio/metabolismo
6.
J Hazard Mater ; 460: 132346, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611390

RESUMO

The attenuation of acidic Se(IV)-rich wastewater, including those associated with acid mine drainage (AMD) and nonferrous metallurgical wastewater (NMW), presents a serious environmental challenge. This study investigates the effects of diverse factors from pH values to Se(IV)/Fe(III) molar ratios, initial Se(IV) concentrations, and alkali neutralization agents on the direct co-precipitation of ferric selenites in AMD and NMW systems involving different orders of Fe(III) and alkali addition. Our results show that amorphous sulfate-substituted ferric (hydrogen) selenite and Se(IV)-bearing ferrihydrite-schwertmannite are the major Se(IV)-attenuation solids except that gypsum is an additional phase in the NMW system with Ca(OH)2 neutralization. Produced ferric selenites achieve 98-99.8% of Se(IV) immobilization under optimal conditions of pH 4.5, Se(IV)/Fe(III) molar ratios of 0.0625-0.5, and initial Se(IV) concentrations of 0.15-1.3 mmol·L-1. Moreover, completing FeSO4+ and FeHSeO32+/FeSeO3+ complexes as well as different ferric selenite co-precipitates are shown to collectively control aqueous Se(IV) remaining. Specifically, three distinct trends of aqueous Se(IV) concentrations separately correspond to changes in the four factors. The co-precipitation in the NMW system via pH adjustment followed by Fe(III) addition is more efficient for Se(IV) fixation than that in the AMD system because of minimal complexation, concurrent Fe(III) hydrolysis, and enhanced ferric selenite co-precipitation in the former.

7.
ACS Catal ; 13(7): 5007-5019, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066041

RESUMO

The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability.

8.
Environ Sci Pollut Res Int ; 30(14): 40230-40241, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607569

RESUMO

The addition of an arsenite-chloride solution into an arsenite-sulfate solution is extremely beneficial for the removal of As(III) via Fe(III) salt precipitation at pH 2.3. However, the applicability of this method to complicated high-As(III) metallurgical wastewaters still requires further verification. This work investigated the effects of nitrate and Fe/As molar ratio on As(III) immobilization using Fe(III) in three acid radical media including sulfate, chloride, and nitrate at pH 2.3. Our results indicated that 72.1‒93.5% of As(III) was precipitated, which was 5‒10% less than those obtained in the nitrate-free systems. The Fe/As molar ratio of 4 was the optimal condition with an average of 93% As(III) removal based on a broad sulfate/chloride molar ratio range (1:1‒16). However, a maximum of 96% As(III) removal was observed under the Fe/As molar ratio of 1.5 and the sulfate/chloride condition of 1:16. The negative correlation between complexation and precipitation was attributed to the enhanced initial complexation by the synergistic effect of the mononitratoiron complex and FeH2AsO32+. The variation of Fe/As molar ratios resulted in the diverse solid species, thus further affecting the As(III) removal efficiency. Despite producing tooeleite as a major As(III) host phase, ferrihydrite and poorly crystalline ferric arsenite hydroxysulfate formed simultaneously at the Fe/As molar ratio of 4 participated in As(III) immobilization compared with the solid products at Fe/As molar ratios ≤ 2.


Assuntos
Arsenitos , Arsenitos/análise , Compostos Férricos/química , Sulfatos , Cloretos , Águas Residuárias , Nitratos , Ferro/química , Óxidos de Enxofre , Oxirredução
9.
Biotechnol Appl Biochem ; 70(1): 97-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35179798

RESUMO

Pfu DNA polymerase is a vital enzyme in PCR-related experiments. However, it is not easy to achieve high-level expression and high purity through one-step purification. This paper illustrates the method to acquire the full-length open reading frame of Pfu DNA polymerase. Without altering its amino acids, we have modified the codon usage, based on that of the enhanced green fluorescence protein (eGFP), and named it rPfu. The synthesized rPfu gene has been subcloned into the pET28a plasmid and expressed in four Escherichia coli strains without the pLysS plasmid. Three strains have expressed a high level of soluble Pfu DNA polymerase. With the aid of Ni-NTA His•Bind® resin, we could obtain high purity (>95%) soluble recombinant protein. Compared with the commercial, proofreading DNA polymerase, rPfu's bioactivity was 12,987 U/mg; that is, 88,311 U of rPfu could be obtained from 50 mL cultured E. coli. The purified rPfu was able to amplify the length of DNA fragments at least 5.5 kb. The method of increasing soluble protein's yield using the eGFP codon usage may introduce a new possibility to the expression of other soluble recombinant proteins.


Assuntos
Uso do Códon , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo
10.
J Environ Sci (China) ; 124: 31-41, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182140

RESUMO

An advanced cost-saving method of removal of high-As(III) from SO4(-II)-rich metallurgical wastewater has been developed by diluting the SO4(-II) content with As(III)-Cl(-I)-rich metallurgical wastewater and then by the direct precipitation of As(III) with Fe(III) at pH 2.3. As(III) removal at various SO4(-II)/Cl(-I) molar ratios and temperatures was investigated. The results showed that 65.2‒98.2% of As(III) immobilization into solids occurred at the SO4(-II)/Cl(-I) molar ratios of 1:1‒32 and 15‒60 °C in 3 days, which were far higher than those in aqueous sole SO4(-II) or Cl(-I) media at the equimolar SO4(-II) or Cl(-I) and the same temperature. SO4(-II)/Cl(-I) molar ratio of 1:4 and 25 °C were optimal conditions to reach the As removal maximum. Mixed aqueous SO4(-II) and Cl(-I) played a synergetic role in the main tooeleite formation together with (Cl(-I)-free) ferric arsenite hydroxychloride (FAHC) involving the substitution of AsO33- for Cl(-I) for enhanced As fixation. The competitive complexation among FeH2AsO32+, FeSO4+ and FeCl2+ complexes was the main mechanism for the maximum As(III) precipitation at the SO4(-II)/Cl(-I) molar ratio of 1:4. Low As(III) immobilization at high temperature with increased Fe(III) hydrolysis was due to the formation of As(III)-bearing ferrihydrite with the relatively high Fe/As molar ratio at acidic pH.


Assuntos
Arsenitos , Arsênio , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ferro , Águas Residuárias
11.
Sci Total Environ ; 848: 157719, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914597

RESUMO

The factors and mechanisms affecting the fate of the associated Cd during the Fe(II)-activated Cd-bearing ferrihydrite transformation remain poorly understood. Herein we have conducted a series of batch reactions containing ferrihydrite with diverse pH values and initial Fe(II) and Cd concentrations coupled with chemical analyses and spectroscopic examination on the transformation products to probe the mechanisms of the Cd partitioning and the processes of Fe(II)-activated Cd-bearing ferrihydrite transformation under anaerobic conditions. Chemical analyses, Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) results show that the initial Fe(II) and Cd concentrations as well as pH values all have significant effects on the rates and pathways of ferrihydrite transformation. Increasing Cd loading enhances the inhibition of the Fe(II)-activated ferrihydrite transformation rates. High Cd loading alters the Fe(II)-activated ferrihydrite transformation pathways by hindering the recrystallization of both ferrihydrite to more stable iron minerals and the newly formed lepidocrocite to goethite. Chemical analyses show that the release of Cd to solutions during ferrihydrite transformation is accompanied by a reduction in the 0.4 M HCl extractable Cd fraction and that a significant amount of the released Cd is transformed to a 0.4 M HCl unextractable form. Moreover, enhanced Cd release during the Fe(II)-activated ferrihydrite transformation is observed by reducing the pH value or increasing the initial Cd concentration. Results from synchrotron X-ray absorption spectroscopy (XAS) confirm that the majority of the 0.4 M HCl unextractable Cd form is associated with structural incorporation into the recrystallized iron (hydr)oxides via isomorphous substitution for Fe(III). These findings not only provide molecular-level understanding on the behavior of Cd under natural anoxic environments, but also are useful in predicting the geochemical cycling of Cd and developing long-term Cd contaminant management strategies.


Assuntos
Compostos Férricos , Ferro , Anaerobiose , Cádmio , Compostos Férricos/química , Compostos Ferrosos , Ferro/química , Minerais/química , Oxirredução , Óxidos , Pós
12.
Chemosphere ; 301: 134665, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35452640

RESUMO

Ubiquitous co-existence of arsenic (As) and cadmium (Cd) in smelting operations and mine drainage presents a major challenge to the environment. Fe(II)-induced ferrihydrite transformation into secondary, more crystalline minerals often controls the geochemical behavior of associated contaminants including arsenate (As(V)) and Cd(II) in natural and contaminated environments. However, the fate of co-existent As(V) and Cd(II) and the underlying mechanism during this transformation process remain unclear. In this contribution, ferrihydrite containing co-precipitated Cd(II) and As(V) with Fe(II) under diverse pH conditions has been investigated. Results from powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectra show that the co-existence of As(V) and Cd(II) significantly retards the transformation rates of As(V)/Cd(II)-bearing ferrihydrite to more stable iron oxides and reduces that from the newly formed lepidocrocite to goethite. Compared to Cd(II), the co-existent As(V) has stronger influence on the compositions of the transformation products. Chemical analysis shows that phosphate-unextractable As(V) and 0.4 M HCl unextractable Cd(II) both increase as the reaction proceeds during the recrystallization of As(V)/Cd(II)-bearing ferrihydrite, indicating that both As(V) and Cd(II) partially transform to a more stable phase. The co-existent Cd(II) has negligible effects on the As(V) redistribution, but the co-existent As(V) at high loadings has a significant modification in the distribution of Cd(II) during the transformation, which reduces the liberation of Cd(II) into solution, thus decreasing the mobility of Cd(II). These findings have important implications for understanding the mobility and fate of the co-existent As(V) and Cd(II) under natural anoxic environments, remediating the co-existent contaminants, and predicting the long-term behavior of As(V) and Cd(II) in natural and contaminated environments.


Assuntos
Arsênio , Cádmio , Compostos Férricos/química , Compostos Ferrosos , Ferro/química , Minerais/química , Oxirredução
13.
Environ Sci Technol ; 56(9): 5563-5571, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35437983

RESUMO

Calcium arsenates such as pharmacolite (CaHAsO4·2H2O), haidingerite (CaHAsO4·H2O), and weilite (CaHAsO4) are important sinks for arsenic in mine tailings as well as other natural and contaminated sites and are useful for reducing the mobility and bioavailability of this toxic metalloid in the environment. However, calcium arsenates usually occur in trace amounts dominated by other phases, making their detection, identification, and quantification challenging. In this contribution, pharmacolite, haidingerite, and weilite are shown to exhibit subtle but distinct postedge differences in As K-edge X-ray absorption near-edge structure (XANES) spectra and feature characteristic [AsO3]2-, [AsO4]2-, and [AsO4]4- radicals, all derived from the diamagnetic [HAsO4]2- precursor during γ-ray irradiation, in electron paramagnetic resonance (EPR) spectra. In particular, the 75As (nuclear spin I = 3/2 and natural isotope abundance = 100%) hyperfine coupling constants of the [AsO3]2- radicals in pharmacolite and haidingerite as well as other minerals (e.g., calcite and gypsum) are clearly distinct, allowing the unambiguous identification of calcium arsenates by the EPR technique readily at ∼0.1 wt %. Similarly, linear combination fittings of As K-edge XANES spectra demonstrate that pharmacolite and haidingerite at ∼0.1 wt % each in gypsum-rich mixtures can be detected and quantified as well. Therefore, a combination of the EPR and XANES techniques is a powerful approach for the highly sensitive characterization of calcium arsenates in the quest for the safe management and remediation of arsenic contamination. This work demonstrates the highly sensitive characterization of calcium arsenates by integrated electron paramagnetic resonance and synchrotron X-ray absorption spectroscopy.


Assuntos
Arseniatos , Arsênio , Arseniatos/química , Arsênio/química , Cálcio/química , Compostos de Cálcio , Sulfato de Cálcio/química , Espectroscopia de Ressonância de Spin Eletrônica , Síncrotrons , Espectroscopia por Absorção de Raios X
14.
Sci Total Environ ; 819: 153090, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038504

RESUMO

Stabilizing the hazardous calcium arsenic residues (CAR) and monitoring the subsequent fate of arsenic (As) are critical to reduce its risk to the environment. In this work, a novel in situ method has been proposed to stabilize CAR by adding FeIII solution and subsequent formation of the secondary mineral (yukonite). The experiments were conducted at pH 6-9 with different Fe/As molar ratios (0.28-0.66) and the solid phases were characterized by using X-ray diffraction and scanning/transmission electron microscopy. Results showed that the stability of the CAR was significantly increased after the addition of FeIII solution, indicating good fixation effectiveness. The dissolved As concentration in the treated CAR samples continuously decreased to <5 mg/L after 490 days of treatment at Fe/As molar ratio ≥ 0.54 and pH ≥ 8, with the leached As concentration lower than 5 mg/L (US EPA standard) for most of the treated CAR in the TCLP and HVM tests. The formation of yukonite under different experimental conditions is closely related to the enhanced stability of the treated CAR. This work provides a novel in situ method to treat CAR which might have potential for future industrial applications.


Assuntos
Arsênio , Arsênio/química , Cálcio , Concentração de Íons de Hidrogênio , Ferro/química , Difração de Raios X
15.
Sci Total Environ ; 807(Pt 1): 150749, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619194

RESUMO

Adsorption of molybdate (Mo(VI)) on the surfaces of ferrihydrite is one of the most critical processes that control its mobility and fate in the environment. However, the sorption mechanism and the effect of pH on the speciation of Mo(VI) on ferrihydrite surfaces are not well understood. In this study, X-ray diffraction (XRD), Raman, Fourier transform infrared (FTIR), and Mo K-edge and L3-edge X-ray absorption spectroscopy (XAS) have been utilized to characterize the Mo(VI) species sorbed on ferrihydrite under various pH conditions. XRD, Raman, and FTIR results show that at acidic pH, surface precipitation of poorly crystalline ferric molybdate (PCFM) occurs under apparently undersaturated conditions (theoretical log IAP < log Ksp) and is enhanced by the aging process, whereas Mo(VI) is mainly present as surface adsorbed species at circum-neutral pH. The Mo K-edge and L3-edge X-ray absorption near edge structure (XANES) analyses show that a mixture of tetrahedrally and octahedrally coordinated Mo(VI) simultaneously exists at pH 3-7 and the octahedral Mo(VI) species decreases with increasing pH. The Mo-Fe interatomic distances (3.52-3.56 Å) derived from EXAFS fittings suggest the corner-sharing complexation of both MoO4 and MoO6 with FeO6 octahedra. As the pH decreases from 7 to 3, the coordination number of the Mo-Fe shell (CNMo-Fe) increases from 0.6(3) to 1.9(3), possibly due to the gradual transformation of surface adsorbed Mo(VI) to PCFM. These findings on the observation of Mo(VI) complexation, surface precipitation, and their marked pH dependence during the Mo(VI) adsorption on ferrihydrite have important implications for both understanding the mobility and fate of Mo(VI) in natural and hydrometallurgical industry impacted environments and developing optimal applications for the remediation of Mo contamination in aqueous environments.


Assuntos
Compostos Férricos , Ferro , Adsorção , Molibdênio
17.
Langmuir ; 37(45): 13309-13321, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34743516

RESUMO

A Ag3PO4/GO/UiO-66-NH2(AGU) composite photocatalyst was prepared by an ultrasonic-assisted in situ precipitation method. The optical property, structure, composition, and morphology of photocatalysts were investigated using UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and charge flow tracking by photodeposition of Pt and PbO2 nanoparticles. In comparison with Ag3PO4 and Ag3PO4/UiO-66-NH2(AU), the AGU composite photocatalyst showed heightened photocatalytic performance for the degradation of levofloxacin hydrochloride (LVF). The AGU photocatalyst (dosage: 0.8 g/L) with 1% mass content of graphene oxide (GO), the mass ratio of Ag3PO4 and UiO-66-NH2(U66N) reached 2:1, showed the highest photodegradation rate of 94.97% for 25 mg/L LVF after 60 min of visible light irradiation at pH = 6. The formation of a heterojunction and the addition of GO synergistically promote faster separation of electron-hole pairs, retain more active substances, and enhance the performance of the photocatalyst. Furthermore, the mechanism of the Z-scheme of the AGU composite photocatalytic is proposed.


Assuntos
Levofloxacino , Compostos de Prata , Catálise , Grafite , Luz , Estruturas Metalorgânicas , Fosfatos , Ácidos Ftálicos
18.
Sci Total Environ ; 778: 146424, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030383

RESUMO

The toxicity and mobility of antimony (Sb) are strongly influenced by the redox transformation of widely spread 2-line ferrihydrite (Fh) in natural soils and sediments. This study investigated the transformation and redistribution of adsorbed antimonite (Sb(III)) during Fe(II)-catalyzed recrystallization of Fh under anaerobic conditions. X-ray diffraction (XRD), transmission electron microscopy (TEM), and synchrotron based X-ray absorption spectroscopy (XAS) were utilized to characterize the mineralogy and morphology of generated minerals as well as the speciation of Sb and Fe. Chemical analysis and Sb LIII-edge XANES spectra demonstrated that a great part of Sb(III) (80%-90%) was oxidized to Sb(V) by reactive oxygen species (ROS) during the Fe(II)-catalyzed transformation of Fh. Chemical extraction results showed that the mobility of Sb was significantly reduced with 50%-70% of initially adsorbed Sb(III) transformed to phosphate-unextractable phase. Antimony K-edge EXAFS analysis showed the SbO6 octahedra were incorporated into secondary minerals by substituting the Fe atoms. Our findings shed new light on the understanding of the geochemical behavior of Sb(III) under anoxic conditions.

19.
Environ Sci Technol ; 54(6): 3169-3180, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083476

RESUMO

Gypsum is the most common sulfate mineral on Earth's surface and is the dominant solid byproduct in a wide variety of mining and industrial processes, thus representing a major source for heavy metal(loid) contamination, including selenium. Gypsum crystals grown from the gel diffusion technique in 0.02 M Na2SeO4 solution at pH 7.5 and 0.02 M Na2SeO3 solutions at pH 7.5 and 9.0 contain 828, 5198, and 5955 ppm Se, respectively. Synchrotron Se K-edge X-ray absorption spectroscopic analyses show that selenite and selenate are the dominant species in Se4+- and Se6+-doped gypsum, respectively. The single-crystal EPR spectra of Se4+- and Se6+-doped gypsum after gamma-ray irradiation reveal five selenium-centered oxyradicals: SeO2-(I), SeO2-(II), SeO2-(III), SeO3-, and HSeO42-. The former three radicals provide unequivocal evidence for the substitution of their paramagnetic precursor SeO32- for SO42- in the gypsum structure, while the latter two confirm the replacement of SeO42- for SO42-. These results demonstrate that gypsum has a significant capacity for sequestrating both selenite and selenate in the structure but has a marked preference for the former, thus confirming important controls on the mobility and bioavailability of selenium oxyanions and pointing to optimal applications of gypsum for remediating selenium contamination under neutral to alkaline conditions.


Assuntos
Compostos de Selênio , Selênio , Sulfato de Cálcio , Espectroscopia de Ressonância de Spin Eletrônica , Ácido Selênico , Ácido Selenioso , Selenito de Sódio , Síncrotrons , Espectroscopia por Absorção de Raios X
20.
J Hazard Mater ; 392: 122286, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32086094

RESUMO

Pulmonary surfactant or its components can function as barriers toward nanomaterials (NMs) entering pulmonary systems. However, since pulmonary surfactant mainly consists of lipids, it may be necessary to investigate the effects of co-exposure to NMs and pulmonary surfactant or its components on lipid metabolism and related signaling pathways. Recently we found that multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into lipid-laden foam cells via ER stress pathway. Here this study further investigated the impact of pulmonary surfactant component dipalmitoylphosphatidylcholine (DPPC) on this process. Up to 64 µg/mL hydroxylated or carboxylated MWCNTs induced lipid accumulation and IL-6 release in THP-1 macrophages, accompanying with increased oxidative stress and p-chop proteins (biomarker for ER stress). Incubation with 100 µg/mL DPPC led to MWCNT surface coating but did not significantly alter MWCNT internalization, lipid burden or IL-6 release. However, lipidomics indicated that DPPC altered lipid profliles in MWCNT-exposed cells. DPPC also led to a higher level of de novo lipogenesis regulator FASN in cells exposed to hydroxylated MWCNTs, as well as a higher level of p-chop and scavenger receptor MSR1 in cells exposed to carboxylated MWCNTs. Combined, DPPC did not significantly affect MWCNT-induced lipid accumulation but altered lipid components and ER stress in macrophages.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/farmacologia , Células Espumosas/metabolismo , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono , Surfactantes Pulmonares/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...