Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701860

RESUMO

Fluorinated compounds (FCs) such as sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) have garnered attention due to their environmental impact. This study investigates the mineralization and removal of two potent FCs: SF6 and NF3. The results confirm that utilizing various oxalate salts leads to the formation of corresponding metallic fluorides: lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF), validating the occurrence of mineralization reactions. Among the oxalate salts, sodium oxalate demonstrates the highest mineralization efficiency in both SF6 and NF3 removal. Real-time Fourier transform infrared spectroscopy (FT-IR) gas-phase analysis confirms rapid and complete gas removal within a short reaction time using the selected oxalate salts. Meticulous mass balance calculations revealed that oxalates (LiF, NaF, and KF) yielded sulfur (S) at rates of 92.09%, 91.85%, and 84.98% following SF6 mineralization. Additionally, the conversion rates of oxalates to the corresponding metallic fluorides (LiF, NaF, and KF) after SF6 mineralization were 98.18%, 95.82%, and 95.21%, respectively. Similarly, after NF3 mineralization, these conversion rates stood at 92.18%, 90.67%, and 90.02%, respectively. The removal efficiencies for SF6 (1000 ppm) were 4.98, 12.01, and 7.23 L/g, while those for NF3 (1000 ppm) were 14.1, 12.6, and 11.7 L/g, respectively. Notably, sodium oxalate exhibits superior effectiveness, achieving 100% SF6 conversion within 30 min and 100% NF3 conversion within 50 min. This work underscores the potential of oxalate mineralization as a promising strategy for efficient and rapid removal of potent fluorinated compounds, paving the way for environmentally benign FC remediation techniques with broader implications for sustainable gas treatment technologies.


Assuntos
Fluoretos , Gases de Efeito Estufa , Oxalatos , Hexafluoreto de Enxofre , Oxalatos/química , Hexafluoreto de Enxofre/química , Fluoretos/química , Gases de Efeito Estufa/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Recuperação e Remediação Ambiental/métodos
2.
Chemosphere ; 350: 141008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154673

RESUMO

The management of environmental pollution and carbon dioxide (CO2) emissions is a challenge that has spurred increased research interest in determining sustainable alternatives to decrease biowaste. This state-of-the-art review aimed to describe the preparation and utilization of carbon-based nanomaterials (CNM) for biogas enhancement and wastewater contaminant (dyes, color, and dust particles) removal. The novelty of this review is that we elucidated that the performance of CNMs in the anaerobic digestion (AD) varies from one system to another. In addition, this review revealed that increasing the pyrolysis temperature can facilitate the transition from one CNM type to another and outlined the methods that can be used to develop CNMs, including arc discharge, chemical exfoliation, and laser ablation. In addition, this study showed that methane (CH4) yield can be slightly increased (e.g. from 33.6% to 60.89%) depending on certain CNM factors, including its type, concentration, and feedstock. Temperature is a fundamental factor involved in the method and carbon sources used for CNM synthesis. This review determined that graphene oxide is not a good additive for biogas and CH4 yield improvement compared with other types of CNM, such as graphene and carbon nanotubes. The efficacy of CNMs in wastewater treatment depends on the temperature and pH of the solution. Therefore, CNMs are good adsorbents for wastewater contaminant removal and are a promising alternative for CO2 emissions reduction. Further research is necessary to determine the relationship between CNM synthesis and preparation costs while accounting for other factors such as gas flow, feedstock, consumption time, and energy consumption.


Assuntos
Nanotubos de Carbono , Purificação da Água , Águas Residuárias , Biocombustíveis , Dióxido de Carbono/análise , Metano , Reatores Biológicos , Anaerobiose
3.
Chemosphere ; 339: 139703, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536537

RESUMO

Ethylenediamminetetraacetatonickel(II) (EDTA-Ni(II)) has emerged as a significant soil and groundwater contaminant due to the increasing agricultural and industrial activities, posing environmental challenges. This study focuses on addressing the reactivity of green rust (GR), which can be hindered by oxidation with oxygen, limiting its effectiveness in remediation processes. To overcome this limitation and enhance the adsorptive capacities, the combination of sulfate green rust (SO4-GR) with various Fe(II)/Fe(III) ratios with a high-surface-area adsorbent, MoS2, resulting in the formation of binary composites of green rust-deposited MoS2 (MSGs) were explored. The aim was to improve the removal efficiency of EDTA-Ni(II) from contaminated wastewater. To characterize the MSGs, a comprehensive analysis using XRD, SEM, TEM, FTIR, and X-ray absorption spectroscopy was performed. The surface areas of the MSGs were smaller than that of MoS2 but larger than that of the SO4-GRs, indicating a promising composite material. XANES spectra analysis revealed that both MSGs and SO4-GRs exhibited a mixture of ferrous and ferric ions, as evident from their spectral positioning between FeO and Fe2O3. The optimal pH for efficient removal of EDTA-Ni(II) was 3, which resulted in removal efficiencies of 45.6%, 47.3%, 46.0%, and 46.2% for MSG 1, MSG 2, MSG 3, and MSG 4 after 24 h, respectively. Reducing the initial concentration of EDTA-Ni(II) to 50 mg Ni(II)/L effectively doubled the removal efficiency. Notably, as EDTA-Ni(II) was removed, an increased leaching of iron was observed, leading to a total iron concentration exceeding 40 mg/L for the composites with higher Fe(II)/Fe(III) ratios. These findings underscore the potential of MSG as a promising material for degrading EDTA-Ni(II) in contaminated wastewater, offering a viable solution to mitigate the environmental impact of this emerging contaminant. This study contributes to the understanding of green rust reactivity and provides valuable insights for developing effective strategies to address the challenges associated with EDTA-Ni(II) contamination.


Assuntos
Compostos Férricos , Águas Residuárias , Compostos Férricos/química , Ácido Edético , Molibdênio , Ferro/química , Compostos Ferrosos/química
4.
Int J Biol Macromol ; 251: 126337, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586620

RESUMO

Thermo-/pH-sensitive nanocomposites based on mesoporous silicate MCM-41 (MSNCs) derived from rice husk ash were synthesized and characterized. MSNCs were coated with thermo-/pH-sensitive Pluronic® F127 and gelatin to form MSNCs@gp nanocomposites, serving as carriers for controlled release of the anticancer drug doxorubicin (Dox). The in vitro and in vivo antitumor efficacy of MSNCs@gp-Dox against liver cancer was evaluated. Fourier-transform infrared (FTIR) spectra confirmed the silica nature of MSNCs@gp by detecting the Si-O-Si group. Under acidic microenvironments (pH 5.4) and 42 °C, MSNCs@gp-Dox exhibited significantly higher Dox release (47.33 %) compared to physiological conditions. Thermo-/pH-sensitive drug release (47.33 %) was observed in simulated tumor environments. The Makoid-Banakar model provided the best fit at pH 7.4 and 37 °C with a mean squared error of 0.4352, an Akaike Information Criterion of 15.00, and a regression coefficient of 0.9972. Cytotoxicity tests have demonstrated no significant toxicity in HepG2 cells treated with various concentrations of MSNCs@gp, while MSNCs@gp-Dox induced considerable cell apoptosis. In vivo studies in nude mice revealed effective suppression of liver cancer growth by MSNCs@gp-Dox, indicating high pharmaceutical efficacy. The investigated MSNCs@gp-based drug delivery system shows promise for liver cancer therapy, offering enhanced treatment efficiency with minimal side effects.

5.
Biomater Adv ; 151: 213477, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244029

RESUMO

Intelligent drug-delivery systems are considered one of the most important techniques for improving cancer treatment using existing over-the-counter medicines. However, metallic materials are always accompanied by metabolism problems, whereas chemotherapy produces several side effects in humans. Carbon-based materials exhibit exceptional features such as bio-affinity and bio-degradability. Herein, hollow mesoporous carbon nanoparticles (HMCs) are reported as effective nanocarriers of anti-cancer small drug molecules. Near IR (NIR) sources, which can penetrate most organs, induce thermal effects via non-invasive pathways. NIR radiation not only provides thermal therapy but also is compatible with temperature-sensitive coated responsive polymer shells. The template method was used to synthesize HMCs with size 200 ± 50 nm, under various conditions, to obtain suitably sized and hollow structures for liver-cancer treatment. Additional pH/thermal-bi-responsive poly(N-isopropylacrylamide) (PNIPAM) shells were further coated onto the HMCs to produce multiple shells that could trigger swelling motions in PNIPAM@HMCs, as confirmed via small-angle X-ray scattering (SAXS). NIR results demonstrated an extreme increase to the ∆T of 8.7 and 14.2 °C for HMC and PNIPAM@HMCs, respectively. The SAXS spectra analyzed using SasView simulations demonstrated the multi-shell structures of synthesized HMCs and the release mechanism of PNIPAM@HMCs. Based on the model simulation of SAXS, the different rates of polymer swelling indicated the core shrinkage (229.7 to 134.2 Å) and shell expansion (324.3 to 514.3 Å) at 37 °C and 42 °C, respectively. In addition, the first-order, Higuchi, Korsmeyer-Peppas, and Weibull mathematical models were used to verify the drug-release kinetics, and the model with the highest R2 value was considered most suitable for further application. This paper presents the first SAXS study on PNIPAM@HMCs release kinetics and related mechanisms. This phenomenon indicates NIR-induced PNIPAM@HMCs as an effective strategy for cancer treatment via doxorubicin release.


Assuntos
Antineoplásicos , Nanopartículas , Humanos , Carbono/química , Liberação Controlada de Fármacos , Nanopartículas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros , Concentração de Íons de Hidrogênio
6.
Chemosphere ; 334: 138986, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209850

RESUMO

The utilization of organic matter (OM) to produce biogas is an attractive alternative for promoting sustainable development, addressing energy shortages and waste disposal problems, creating jobs, and investing in sanitation systems. Thus, this alternative is becoming increasingly important in developing countries. This study investigated the perceptions of residents in Delmas district, Haiti, regarding the use of biogas produced via human excreta (HE). A questionnaire containing closed- and open-ended questions was administered for this purpose. Sociodemographic aspects had no influence on locals' willingness to use biogas produced via different types of OM. The novelty of this research is that democratization and decentralization of the energy system are possible in the Delmas district using biogas produced from various organic wastes. Socio-characteristics of the interviewees did not influence their willingness towards a possible adopt biogas-based energy from several types of degradable organic matter. The results showed that more than 96% of the participants agreed that HE could be used to produce biogas and reduce energy shortages in their locality. In addition, 93.3% of the interviewees thought this biogas could be utilized for cooking food. However, 62.5% of respondents argued that using HE to produce biogas could be dangerous. Bad smell and fear of biogas produced via HE are the major concerns of users. In conclusion, this research could guide stakeholders' decisions to better address the problems of waste disposal and energy shortages and to create new jobs in the target study area. The research findings could help decision-makers better understand the willingness of locals to invest in household digester programs in Haiti. Further research is required to investigate farmers 'willingness to use digestates from biogas production.


Assuntos
Reatores Biológicos , Eliminação de Resíduos , Humanos , Haiti , Biocombustíveis , Eliminação de Resíduos/métodos , Fenômenos Físicos , Anaerobiose
7.
ACS Omega ; 8(15): 13813-13818, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091403

RESUMO

Combustible gas (e.g., gasification syngas) cleaning at high temperatures can obtain further gains in energy efficiency for power generation and importantly leads to a simplified process and lower cost as a commercially viable source of clean energy. Thus, a feasibility study for high-temperature desulfurization (HTDS) and additional high-temperature particulate filtration (HTPF) of a raw syngas using ZnO sorbent-dispersed Raney CuO (ZnO/R-CuO) and ceramic filter (ZnO/CF) has been carried out. By synchrotron X-ray absorption near-edge structure (XANES) spectroscopy, mainly Zn(II) and Cu(II) are found in the ZnO/R-CuO sorbents. Both ZnO and R-CuO in the sorbents are involved in HTDS (1% H2S) at 873 K to form ZnS, Cu2S, and a small amount of CuS and reach relatively high HTDS efficiencies (82-90%). In addition, regeneration of the sulfurized sorbent by oxidation with O2 at 873 K (HTRG) for 1 h can restore ZnO and CuO for continuous and repetitive HTDS-HTRG cycles. To facilitate the HTDS engineering applications by the ZnO/R-CuO sorbents, their reaction rate constant (8.35 × 104 cm3/g/min) and activation energy (114.8 kJ/mol) at 873 K have also been determined. Furthermore, the ZnO/CF sorbent/filter can perform HTDS and additional HTPF at 873 K with very high particulate removal efficiencies (>98%). This demonstrates the feasibility for hot-syngas cleaning with a much better energy efficiency and lesser cost for cleaner power generation.

8.
Sci Total Environ ; 874: 162437, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858210

RESUMO

The use of fossil fuels, emission of greenhouse gases (GHG) into the atmosphere, and waste pose a problem to the environment and public health that urgently needs to be dealt with. Among numerous chemical activating agents that can be added to anaerobic digestion (AD) to enhance nutrient removal and increase the quality and quantity of biomethane, iron chloride (FeCl3) is the one that has the lowest cost and is the most environmentally friendly. This state-of-the-art review aims to revise the influence of FeCl3 on the Brunauer-Emmett-Teller (BET) surface area of biochar and its ability to increase methane (CH4) yield and remove contaminants from biogas and wastewater. The novelty of the study is that FeCl3, an activating agent, can increase the BET surface area of biochar, and its efficacy increases when combined with zinc chloride or phosphoric acid. Regarding the removal of contaminants from wastewater and biogas, FeCl3 has proven to be an effective coagulant, reducing the chemical oxygen demand (COD) of wastewater and hydrogen sulfide in biogas. The performance of FeCl3 depends on the dosage, pH, and feedstock used. Therefore, FeCl3 can increase the BET surface area of biochar and CH4 yield and remove contaminants from wastewater and biogas. More research is needed to investigate the ability of FeCl3 to remove water vapor and carbon dioxide during biogas production while accounting for a set of other parameters, including FeCl3 size.


Assuntos
Cloretos , Águas Residuárias , Biocombustíveis , Esgotos , Eliminação de Resíduos Líquidos , Ferro , Metano , Reatores Biológicos , Anaerobiose
9.
Pharmaceutics ; 15(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986601

RESUMO

Nanomedicine has garnered significant interest owing to advances in drug delivery, effectively demonstrated in the treatment of certain diseases. Here, smart supermagnetic nanocomposites based on iron oxide nanoparticles (MNPs) coated with Pluronic F127 (F127) were developed for the delivery of doxorubicin (DOX) to tumor tissues. The XRD patterns for all samples revealed peaks consistent with Fe3O4, as shown by their indices (220), (311), (400), (422), (511), and (440), demonstrating that the structure of Fe3O4 did not change after the coating process. After loading with DOX, the as-prepared smart nanocomposites demonstrated drug-loading efficiency and drug-loading capacity percentages of 45 ± 0.10 and 17 ± 0.58% for MNP-F127-2-DOX and 65 ± 0.12 and 13 ± 0.79% for MNP-F127-3-DOX, respectively. Moreover, a better DOX release rate was observed under acidic conditions, which may be credited to the pH sensitivity of the polymer. In vitro analysis demonstrated the survival rate of approximately 90% in HepG2 cells treated with PBS and MNP-F127-3 nanocomposites. Furthermore, after treatment with MNP-F127-3-DOX, the survival rate decreased, confirming cellular inhibition. Hence, the synthesized smart nanocomposites showed great promise for drug delivery in liver cancer treatment, overcoming the limitations of traditional therapies.

10.
Environ Res ; 227: 115780, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990197

RESUMO

Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.


Assuntos
Cianobactérias , Microalgas , Fermentação , Cianobactérias/metabolismo , Hidrogênio/análise , Hidrogênio/metabolismo , Biocombustíveis , Biomassa
11.
Colloids Surf B Biointerfaces ; 222: 113129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610364

RESUMO

A new drug delivery system (DDS) type complexing magnetic nanoparticles (MNP) along with boron nanosheets (BNN) coated with a pH-responsive polymer-polyethylene glycol (PEG) for the manageable loading/release of the anti-cancerous drug, doxorubicin (DOX), was created (MNP-BNN-PEG-DOX). The X-ray diffraction patterns of the nanocomposites displayed wide diffraction peaks for BNN at 25.1° and 42.3°, belonging to the (002) and (100) planes, correspondingly. Additionally, the characteristic peaks of Fe3O4 appeared at 30.5°, 35.9°, 43.6°, 54.1°, 57.5°, and 63.2°, belonging to the (220), (311), (400), (422), (511), and (440) crystal planes, correspondingly. Moreover, the magnetic properties of the nanocomposites revealed that the MNP-BNN remained magnetic after coating with PEG. The saturation magnetization (Ms) of the uncoated-MNP-BNN and MNP-BNN-PEG-1 were 49.4 and 42.3 emu g-1, respectively. Both in vitro and in vivo analyses shown that DDS might inhibit tumor growth, provoke cancer cell apoptosis, and reduce the cytotoxic effects of DOX. In vivo analysis demonstrated that after treatment with phosphate-buffered saline (PBS), MNP-BNN-PEG-1, free DOX, and MNP-BNN-PEG-1-DOX, the average tumor growth and weight were 1906, 1997, 1188, and 1043 nm and 0.17, 0.20, 0.13, and 0.07 g, respectively. The MNP-BNN-PEG-DOX nanoparticles could be an effective treatment and potential alternative for liver cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Doxorrubicina , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Polietilenoglicóis/química , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Portadores de Fármacos/química
12.
Int J Biol Macromol ; 228: 487-497, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581030

RESUMO

Dual pH-sensitive smart nanocarriers based on silica nanoparticles (SNPs) extracted from rice husk ashes (RHAs) to effectively inhibit liver cancer cell proliferation were investigated. The SNPs were coated with chitosan (CH) and loaded with doxorubicin (DOX), then functionalized with cell membrane (CM) for homologous targeting ability. The FTIR spectra showed an absorption wave number at 1083 cm-1 which confirmed the existence of the SiOSi group, ratifying that the nanocarriers belong to silica species. The Korsmeyer-Peppas kinetic model reported R2 values of 0.996 and 0.931 for pH = 5.4 and pH = 7.4, respectively, demonstrating pH-responsive behavior of the nanocarriers. The cytotoxicity test confirmed that the HepG2 cell line treated with different SNP-CH-CM concentrations had no detectable significant cell toxicity, however, SNP-CH-DOX-CM induced greater cell death. In vivo tests revealed that SNP-CH-DOX-CM suppressed liver cancer growth in nude mice, demonstrating high pharmaceutical capability. Histological examination of vital organs showed that the targeted drug delivery system (DDS) had minor in vivo toxicity. In the light of its high treatment efficacy and minimal side effects, the investigated DDS is promising for the therapy of liver cancer.


Assuntos
Carcinoma Hepatocelular , Quitosana , Neoplasias Hepáticas , Nanopartículas , Oryza , Animais , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Quitosana/química , Carcinoma Hepatocelular/tratamento farmacológico , Dióxido de Silício/química , Camundongos Nus , Sistemas de Liberação de Medicamentos , Doxorrubicina , Membrana Celular , Nanopartículas/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
13.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234617

RESUMO

This study developed and examined the application of bismuth sulfide doped on graphitic carbon nitride (Bi2S3@g-C3N4) in the degradation of NO under solar irradiation. Bi2S3@g-C3N4 was prepared through the calcination method. The morphological structure and chemical properties of the synthesized photocatalyst were analyzed before the degradation tests. After doping with Bi2S3@g-C3N4, the bandgap was reduced to 2.76 eV, which increased the absorption of solar light. As a result, the Bi2S3@g-C3N4 achieved higher NO degradation (55%) compared to pure Bi2S3 (35%) and g-C3N4 (45%). The trapping test revealed that the electrons were the primary species responsible for most of the NO degradation. The photocatalyst was stable under repeated solar irradiation, maintaining degradation efficiencies of 50% after five consecutive recycling tests. The present work offers strong evidence that Bi2S3@g-C3N4 is a stable and efficient catalyst for the photocatalytic oxidation of NO over solar irradiation.

14.
Colloids Surf B Biointerfaces ; 220: 112923, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252536

RESUMO

In recent years, nanoscience has attracted considerable attention in the field of biomedicine. This involves the use of engineered nanomaterials as vital platforms for targeted drug delivery, diagnosis, imaging, and observation of therapeutic efficiency. This study explored the preparation, characterization, and applications of doxorubicin-loaded magnetic rice husk ash-derived SBA-15 (MIO@RHAS15-DOX nanocomposites) for drug delivery and in vitro/in vivo efficiency in the treatment of liver cancer. The small-angle XRD patterns of the MIO@RHAS15 nanocomposites demonstrated a core diffraction peak at 0.94°, with two noticeable peaks at 1.6° and 1.8°, representing (100), (110), and (200) crystalline planes, respectively, thereby indicating the existence of a well-defined mesostructure. A sharp melting endothermic peak (Tm) at 79 °C was observed for MIO@RHAS15 nanocomposites. The DOX release from MIO@RHAS15 followed the Higuchi model with the best correlation coefficient R2 value of 0.9799. The in vitro studies indicated a concentration dependent anticancer efficiency, with high cancer cells inhibition for MIO@RHAS15-DOX than free DOX. At the highest concentration of DOX (120 µg/mL), there was less than 25% and 15% cell viability after 24 h and 48 h, respectively. The in vivo studies demonstrated that the tumor sizes after treatment with PBS, MIO@RHAS15, free DOX, and MIO@RHS15-DOX were 1081, 904, 143, and 167 mm3, respectively. The in vivo animal test results depicted that the MIO@RHAS15-DOX nanocomposites were able to inhibit liver tumors in all tested mice. Therefore, the prepared nanocomposites possess a great potential for drug delivery application towards cancer treatment, thereby overcoming the limitations of traditional chemotherapy.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Nanocompostos , Oryza , Camundongos , Animais , Doxorrubicina , Nanocompostos/química , Neoplasias Hepáticas/tratamento farmacológico , Fenômenos Magnéticos
15.
Biomater Adv ; 140: 213070, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961189

RESUMO

Microporous round cake-like (diameter: 900 ± 100 nm) MIL-125(Ti) carrier with a central metal (Ti) exhibiting bio-affinity and possessing a great potential to be used as drug release platform, has been synthesized in the present study. The thermal and pH responsiveness of drug delivery systems (DDS) are the most important parameters for drug release and can be provided through polymer coating techniques. The Pluronic F127 (F127) and chitosan (CH) monomers were inserted into the crystal lattice of MIL-125(Ti) carrier during the de novo synthesis process, which were subsequently loaded with doxorubicin (DOX). The results reveal particle size changes (ranged between 30 and 50 %) from the original size of the MIL-125(Ti) carrier in response to temperature and pH when the carrier reaches acid environment. The drug release profiles have been completed through self-design device, which provides for the real-time release in the DOX amounts via UV-Vis spectra. The kinetics analysis was used to evaluate the R2 values of first order, Higuchi, Korsmeyer-peppas, and Weibull fitting equations, where the Weibull fitting indicated the best R2. An increase by 59.3 % of DOX released under the acid status (pH = 5.4) was observed, indicating that the CH-MIL-125(Ti) carrier is temperature and pH responsive. Moreover, the lattice explosion resulting from the temperature increase in the range of 25-42 °C caused an increase in F127-MIL-125(Ti) by 30.8-38.3 %. The simulated SAXS/WAXS studies for the microstructures of MIL-125(Ti) based DDS at different temperatures after polymer coating (F127-MIL-125(Ti)) provide the possible mechanism of lattice explosion. As such, the responsive Ti-MOF has a highly potential for use in the applications of cancer treatment.


Assuntos
Quitosana , Titânio , Quitosana/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Excipientes , Concentração de Íons de Hidrogênio , Polímeros/química , Espalhamento a Baixo Ângulo , Titânio/química , Difração de Raios X
16.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112168, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715504

RESUMO

The upsurge in cancer cases, such as liver cancer, has claimed millions of lives globally and has prompted the development of novel nanodrug delivery systems. These systems allow cancer drugs to be encapsulated in nanocarriers and delivered to tumor sites, and accordingly, help reduce side effects of the current chemotherapeutic treatments. Herein, we prepared nanocarriers comprising magnetic iron oxide (MIO) nanoparticles that were surface modified with crosslinked Pluronic F127 (PF127) and branched polyethylenimine (bPEI) to form MIOpoly nanocarriers. These nanocarriers were then loaded with doxorubicin (DOX) anticancer drug to form the MIOpoly-DOX complex. The nanocarriers were magnetite and possessed superparamagnetic properties. Small-angle neutron scattering (SANS) analysis indicated that the nanocarriers were thermoresponsive and spherically structured. The characteristic peaks at 1285, 1619, 2844, 2919, 2900, 2840, and 3426 cm-1, corresponding to those of CN, -NH2, -CH2, and OH-, confirmed the successful crosslinking, coating of PF127-bPEI polymers on the surface of MIO nanoparticles and DOX conjugation. The bioavailability of the nanocarriers indicated a more than 85% cell viability when using HepG2 liver cancer cells. A pH (54.8% release in 48 h; pH = 5.4) and temperature (51.0% release in 48 h; 42 °C)-dependent release of DOX was observed, displaying a Korsmeyer-Peppas kinetics model at low pH and Weibull model at high temperatures. The high DOX fluorescence observed for MIOpoly-DOX indicated a high cellular uptake enhanced by alternating magnetic field. These results suggest that MIOpoly synthesized using a combined approach of surface crosslinking and grafted with PF127-bPEI appear to offer promising properties as drug delivery system. Therefore, the nanocarriers developed in the study possess a great potential for targeted delivery and thereby circumventing the limitations of conventional chemotherapy.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Campos Magnéticos
17.
J Pediatr Surg ; 56(7): 1227-1232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838896

RESUMO

BACKGROUND: Patients with neuroblastoma, a common childhood malignancy, often have poor prognosis. It is mandatory to develop an accurate and efficient diagnostic tool for neuroblastomas, so that the treatment can be started early. Graphene quantum dot (GQD), a nanomaterial, can be used to carry proteins, genetic materials, or drugs. GD2, a disialoganglioside, is a surface antigen expressed on neuroblastoma. This study investigated the in vivo targeting and imaging of neuroblastomas using GD2-targeting GQDs. METHODS: GQDs were synthesized and conjugated with anti-GD2 antibody (anti-GD2/GQDs). In vitro cytotoxicity of GQDs and anti-GD2/GQDs was studied in human neuroblastoma cells by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide)-based colorimetric assay. The tumor tracking and imaging of anti-GD2/GQDs in mice were investigated by in vivo imaging system (IVIS). RESULTS: Treatment with GQDs or anti-GD2/GQDs induced no or mild cytotoxicity in fibroblasts and neuroblastoma cells. After co-incubation, GQDs and anti-GD2/GQDs were located in the cytoplasm and nucleus of neuroblastoma cells, with GQDs showing a blue fluorescence and anti-GD2/GQDs an orange/red emission. The IVIS images demonstrated accumulation of the fluorescence of anti-GD2/GQDs in the subcutaneous tumors in mice 24 h after intravenous injection of anti-GD2/GQDs. CONCLUSIONS: Anti-GD2/GQDs may potentially be used for the targeting and imaging of neuroblastomas in vivo.


Assuntos
Grafite , Neuroblastoma , Pontos Quânticos , Animais , Criança , Diagnóstico por Imagem , Humanos , Camundongos , Neuroblastoma/diagnóstico por imagem
18.
J Hazard Mater ; 407: 124879, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33387972

RESUMO

The present study was conducted to determine the Cd distribution and speciation in contaminated paddy soils and rice kernels using XANES/EXAFS spectroscopy. The morphology and crystallization of rice and soils were investigated using FE-SEM and XRD techniques. The EXAFS spectra of Cd in soil and rice kernels showed that cadmium oxides (CdO) in soil and rice kernels formed Cd clusters with Cd-O bond distances of 2.35 Å and 2.25 Å (coordination numbers of 2.3 and 3.8), respectively. The XRD patterns show that silica oxide (SiO2, 2θ = 24.2) and aluminum oxide (Al2O3, 2θ = 35.7) were the main components detected. The FE-SEM analysis revealed that the surface characteristics and sizes of the rice kernels are smooth and uneven with particle sizes of 0.5-4 µm, while the soil particles are not uniform and aggregated. Furthermore, the distribution of toxic metals/metalloid (Cd, Pb, Cr, Ni, As, Cu, and Zn) accumulated in the contaminated paddy soils and rice crops were also examined. Interestingly, these results offered an insight into the accumulation mechanism and distribution of heavy metals in contaminated rice farming soils and rice crops.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Metais Pesados/análise , Dióxido de Silício , Solo , Poluentes do Solo/análise
19.
Chemosphere ; 265: 129067, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246704

RESUMO

Copper (Cu) and zinc (Zn) concentrations in oyster soft tissues can be particularly high due to contamination, leading to extremely green/blue colors. This raises key questions regarding the behavior and speciation of trace metals in oyster soft tissues. This study investigated trace metal concentration profiles of contaminated Pacific oyster (Crassostrea gigas) soft tissues collected from trace metal-contaminated coastal area of Xiangshan District using inductively coupled plasma optical emission spectrometry (ICP-OES), energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Moreover, Cu and Zn speciation in contaminated and non-contaminated oyster soft tissues were investigated by X-ray absorption near edge structure spectroscopy/extended X-ray absorption fine structure (XANES/EXAFS) spectroscopic methods. The contents of Cu (1,100-1,400 mg/kg) and Zn (500-700 mg/kg) dry weight were high in oyster soft tissue samples. The XANES/EXAFS results revealed that Cu and Zn existed primarily as copper (II) oxide (CuO) and zinc oxide (ZnO) in contaminated oysters. Furthermore, Cu and Zn formed clusters with Cu-O and Zn-O interatomic distances of 1.97 and 2.21 Å, (coordination numbers 1.0 and 5.6), respectively. In non-contaminated oysters, the less abundant Cu and Zn existed mainly as copper(I) sulfide (Cu2S) and zinc sulfide (ZnS) forming clusters with Cu-S and Zn-S (thiolates) bond distances of 2.09 and 1.23 Å (coordination numbers of 4.6 and 2.4). These results provide further understanding on the chemical speciation of Cu and Zn in contaminated and non-contaminated oyster soft tissues as well as the bioaccumulation of trace metals in the oyster soft tissues.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Bioacumulação , Cobre/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Espectroscopia por Absorção de Raios X , Zinco/análise
20.
Environ Res ; 191: 110176, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950515

RESUMO

To minimize waste production and reduce reliance on fossil fuels, agricultural waste such as rice straw has been actively used in biochemical production. In Taiwan, cellulosic waste has been used in anaerobic digestion for bioethanol production. This process produces a large amount of biomass-associated sludge that may become a serious environmental issue. Therefore, in this study, the anaerobic digestion sludge was recycled for the production of activated carbon via pyrolysis and activation by KOH. Surface characterization showed increased surface area and development of microporous structure upon activation. The FTIR image showed that high temperature activation eliminated most functional groups in the activated carbon, except for CO and C-O groups. The results showed that the activated carbon could be used for pollutant adsorbents such as molecular dyes (methylene blue: 217 mg g-1) and metal ions (copper: 169 mg g-1) from aqueous solution. In addition, the as-synthesized activated carbon can be used for CO2 capture and capacitor. Instead of focusing on one single application, we proposed that centralized production of activated carbon could be used in various applications, while further modification could be adopted depending on the need of its specific application.


Assuntos
Carvão Vegetal , Esgotos , Biomassa , Reciclagem , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...