RESUMO
Losartan is widely used in clinics to treat cardiovascular related diseases by selectively blocking the angiotensin II type 1 receptors (AT1Rs), which regulate the renin-angiotensin system (RAS). Therefore, monitoring the physiological and pathological biodistribution of AT1R using positron emission tomography (PET) might be a valuable tool to assess the functionality of RAS. Herein, we describe the synthesis and characterization of two novel losartan derivatives PET tracers, [18F]fluoroethyl-losartan ([18F]FEtLos) and [18F]ammoniomethyltrifluoroborate-losartan ([18F]AMBF3Los). [18F]FEtLos was radiolabeled by 18F-fluoroalkylation of losartan potassium using the prosthetic group 2-[18F]fluoroethyl tosylate; whereas [18F]AMBF3Los was prepared following an one-step 18F-19F isotopic exchange reaction, in an overall yield of 2.7 ± 0.9% and 11 ± 4%, respectively, with high radiochemical purity (>95%). Binding competition assays in AT1R-expressing membranes showed that AMBF3Los presented an almost equivalent binding affinity (Ki 7.9 nM) as the cold reference Losartan (Ki 1.5 nM), unlike FEtLos (Ki 2000 nM). In vitro and in vivo assays showed that [18F]AMBF3Los displayed a good binding affinity for AT1R-overexpressing CHO cells and was able to specifically bind to renal AT1R. Hence, our data demonstrate [18F]AMBF3Los as a new tool for PET imaging of AT1R with possible applications for the diagnosis of cardiovascular, inflammatory and cancer diseases.
Assuntos
Radioisótopos de Flúor , Losartan/análogos & derivados , Losartan/química , Imagem Molecular , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Animais , Camundongos , Modelos Animais , Imagem Molecular/métodos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos , Distribuição TecidualRESUMO
2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of 2-nitroimidazole, 18 F-AmBF3 -Bu-2NI, could have the potential to image tumor hypoxia at earlier time points. AmBF3 -Bu-2NI was prepared in 4 steps. 18 F labeling was conducted via 18 F-19 F isotope exchange reaction, and 18 F-AmBF3 -Bu-2NI was obtained in 14.8 ± 0.4% (n = 3) decay-corrected radiochemical yield with 24.5 ± 5.2 GBq/µmol specific activity and >99% radiochemical purity. Imaging and biodistribution studies in HT-29 tumor-bearing mice showed that 18 F-AmBF3 -Bu-2NI cleared quickly from blood and was excreted via the hepatobiliary and renal pathways. However, the tumor was not visualized in PET images until 3 hours post-injection due to low tumor uptake (0.54 ± 0.13 and 0.19 ± 0.04%ID/g at 1 and 3 hours post-injection, respectively). The low tumor uptake is likely due to the highly hydrophilic motif of ammoniomethyl-trifluoroborate that prevents free diffusion of 18 F-AmBF3 -Bu-2NI across the cell membrane. Our results suggest that highly hydrophilic 18 F-labeled ammoniomethyl-trifluoroborate derivatives might not be suitable for imaging intracellular targets including nitroreductase, a common tumor hypoxia imaging target.