Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311491, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682729

RESUMO

Conductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T'-WTe2 electrodes with scanning tunneling microscope break junction (STM-BJ) technique. The quantized conductance of 1T'-WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.

2.
Nat Commun ; 14(1): 3657, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339947

RESUMO

Keto-enol tautomerism, describing an equilibrium involving two tautomers with distinctive structures, provides a promising platform for modulating nanoscale charge transport. However, such equilibria are generally dominated by the keto form, while a high isomerization barrier limits the transformation to the enol form, suggesting a considerable challenge to control the tautomerism. Here, we achieve single-molecule control of a keto-enol equilibrium at room temperature by using a strategy that combines redox control and electric field modulation. Based on the control of charge injection in the single-molecule junction, we could access charged potential energy surfaces with opposite thermodynamic driving forces, i.e., exhibiting a preference for the conducting enol form, while the isomerization barrier is also significantly reduced. Thus, we could selectively obtain desired and stable tautomers, which leads to significant modulation of the single-molecule conductance. This work highlights the concept of single-molecule control of chemical reactions on more than one potential energy surface.

3.
Nano Lett ; 23(13): 6027-6034, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387588

RESUMO

Electrodes play an essential role in controlling electrode-molecule coupling. However, conventional metal electrodes require linkers to anchor the molecule. Van der Waals interaction offers a versatile strategy to connect the electrode and molecule without anchor groups. Except for graphene, the potential of other materials as electrodes to fabricate van der Waals molecular junctions remains unexplored. Herein, we utilize semimetallic transition metal dichalcogenides (TMDCs) 1T'-WTe2 as electrodes to fabricate WTe2/metalated tetraphenylporphyrin (M-TPP)/WTe2 junctions via van der Waals interaction. Compared with chemically bonded Au/M-TPP/Au junctions, the conductance of these M-TPP van der Waals molecular junctions is enhanced by ∼736%. More importantly, WTe2/M-TPP/WTe2 junctions exhibit the tunable conductance from 10-3.29 to 10-4.44 G0 (1.15 orders of magnitude) via single-atom control, recording the widest tunable range of conductance for M-TPP molecular junctions. Our work demonstrates the potential of two-dimensional TMDCs for constructing highly tunable and conductive molecular devices.

4.
Chem Sci ; 13(33): 9552-9559, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091890

RESUMO

Solvents can play a significant role in tuning the electrical conductance of single-molecule junctions. In this respect, protic solvents offer the potential to form hydrogen bonds with molecular backbones and induce electrostatic gating via their dipole moments. Here we demonstrate that the effect of hydrogen bond formation on conductance depends on whether transport through the junction is controlled by destructive quantum interference (DQI) or constructive quantum interference (CQI). Furthermore, we show that a protic solvent can be used to switch the conductance of single-molecule junctions between the two forms of quantum interference. To explore this possibility, two regioisomers (BIT-Zwitterion and BIT-Neutral) were synthesized and their single-molecule conductances in aprotic and protic solvents were investigated using a scanning-tunneling-microscope-based break junction technique, combined with density functional theory and quantum transport theory. We find that the protic solvent twists the geometry of BIT-Zwitterion by introducing intermolecular hydrogen bonds between the solvent and target molecule. Moreover, it increases the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the molecule by imposing different electrostatic gating on the delocalized HOMO and localized LUMO, leading to a lower conductance compared to that in aprotic solvent. In contrast, the conductance of BIT-Neutral increases due to a transformation from DQI to CQI originating from a change from a planar to a folded conformation in the protic solvent. In addition, the stacking between the two folded moieties produces an extra through-space transport path, which further contributes to conductance. This study demonstrates that combinations of protic solvents and regioisomers present a versatile route to controlling quantum interference and therefore single-molecule conductance, by enabling control of hydrogen bond formation, electrostatic gating and through-space transport.

5.
Angew Chem Int Ed Engl ; 61(27): e202200191, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417060

RESUMO

Supramolecular electronics provide opportunities to integrate molecular building blocks into electronic circuits, and investigations of the mechanical properties of the non-covalent interactions are necessary to understand the role of the assembly configuration in the electronic coupling among different assembly blocks. However, the mechanical characterization of supramolecular interactions remains experimentally challenging. We investigated the strain distribution of the supramolecular interactions through a series of single-stacking junctions. The alpha values exhibit a clear odd-even effect versus the numbers of thiophene rings. The theoretical calculations demonstrated that a larger rotational barrier of the single-stacking junctions with an even number of thiophene rings leads to limited torsional freedom and thus a smaller strain distribution. These results provide new insights into the control of supramolecular interactions by the design of the basic molecular building blocks.

6.
Small ; 18(3): e2104554, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796644

RESUMO

The host-guest interaction acts as an essential part of supramolecular chemistry, which can be applied in confined reaction. However, it is challenging to obtain the dynamic process during confined reactions below micromolar concentrations. In this work, a new method is provided to characterize the dimerization process of the guest 1,2-bis(4-pyridinyl) ethylene in host cucurbit[8]curil using scanning tunneling microscope-break junction (STM-BJ) technique. The guest reaction kinetics is quantitatively by nuclear magnetic resonance (NMR) and in situ single-molecule junctions. It is found that in the single-molecule conductance measurements, the electrical signals of the reactants with a concentration as low as 5 × 10-6  m are clearly detected, and the reaction kinetics at micromolar concentrations are further obtained. However, in NMR measurements, the characteristic peak signal of the reactants is undetectable when the concentration of the reactants is lower than 0.5 × 10-3  m and it cannot be quantified. In addition, the strong electric field from the nanogap accelerates the reaction. This work reveals that single-molecule STM-BJ techniques are more sensitive for tracking confined reactions than that by NMR techniques and can be used to study effect of extremely strong electric field on kinetics.


Assuntos
Nanotecnologia , Espectroscopia de Ressonância Magnética
7.
ACS Sens ; 6(2): 461-469, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33326215

RESUMO

The sensing platform based on single-molecule measurements provides a new perspective for constructing ultrasensitive systems. However, most of these sensing platforms are unavailable for the accurate determination of target analytes. Herein, we demonstrate a conductance ratiometric strategy combing with the single-molecule conductance techniques for ultrasensitive and precise determination. A single-molecule sensing platform was constructed with the 3,3',5,5'-tetramethylbenzidine (TMB) and oxidized TMB (oxTMB) as the conductance ratiometric probes, which was applied in the detection of Ag[I] and nicotinamide adenine dinucleotide (NADH). It was found that the charge transport properties of TMB and oxTMB were distinct with more than an order of magnitude change of the conductance, thus enabling conductance ratiometric analysis of the Ag[I] and NADH in the real samples. The proposed method is ultrasensitive and has an anti-interference ability in the complicated matrix. The limit of detection can be as low as attomolar concentrations (∼34 aM). We believe that the proposed conductance ratiometric approach is generally enough to have a promising potential for broad and complicated analysis.


Assuntos
Técnicas Biossensoriais , NAD , Prata
8.
Nat Commun ; 10(1): 5458, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784534

RESUMO

The studies of quantum interference effects through bulk perovskite materials at the Ångstrom scale still remain as a major challenge. Herein, we provide the observation of room-temperature quantum interference effects in metal halide perovskite quantum dots (QDs) using the mechanically controllable break junction technique. Single-QD conductance measurements reveal that there are multiple conductance peaks for the CH3NH3PbBr3 and CH3NH3PbBr2.15Cl0.85 QDs, whose displacement distributions match the lattice constant of QDs, suggesting that the gold electrodes slide through different lattice sites of the QD via Au-halogen coupling. We also observe a distinct conductance 'jump' at the end of the sliding process, which is further evidence that quantum interference effects dominate charge transport in these single-QD junctions. This conductance 'jump' is also confirmed by our theoretical calculations utilizing density functional theory combined with quantum transport theory. Our measurements and theory create a pathway to exploit quantum interference effects in quantum-controlled perovskite materials.

9.
Angew Chem Int Ed Engl ; 58(31): 10601-10605, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31166071

RESUMO

Molecular components are vital to introduce and manipulate quantum interference (QI) in charge transport through molecular electronic devices. Up to now, the functional molecular units that show QI are mostly found in conventional π- and σ-bond-based systems; it is thus intriguing to study QI in multicenter bonding systems without both π- and σ-conjugations. Now the presence of QI in multicenter-bond-based systems is demonstrated for the first time, through the single-molecule conductance investigation of carborane junctions. We find that all the three connectivities in carborane frameworks show different levels of destructive QI, which leads to highly suppressed single-molecule conductance in para- and meta-connected carboranes. The investigation of QI into carboranes provides a promising platform to fabricate molecular electronic devices based on multicenter bonds.

10.
Clin Linguist Phon ; 24(4-5): 369-86, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20345265

RESUMO

Adele Miccio recognized the paucity of information on the phonological development of children from diverse linguistic and cultural backgrounds, and emphasized the need to apply advances in bilingual phonological research toward an appropriate phonological measure for bilingual children. In the spirit of her pioneering work, the present study investigated both Mandarin and English phonological patterns in typically-developing 5-year-old bilingual children in an English-immersion programme in Taiwan. Consonant and vowel accuracy, number and types of phonological processes, and Mandarin-influenced English patterns were assessed on a single-word assessment in each language. Results indicated comparable levels of phoneme accuracy and similar rates and types of phonological processes for bilinguals and their monolingual counterparts. A number of English phonological processes for bilinguals, however, suggested a possible Mandarin influence. The present results reiterate Dr Miccio's call for interdisciplinary collaboration to enhance one's understanding of bilingual language development, to advance successful intervention for bilingual children.


Assuntos
Linguagem Infantil , Multilinguismo , Fonética , Pré-Escolar , Feminino , Humanos , Idioma , Masculino , Análise Multivariada , Medida da Produção da Fala , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...