Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763705

RESUMO

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Assuntos
Celulose , Embalagem de Alimentos , Lipídeos , Nanofibras , Madeira , Nanofibras/química , Celulose/química , Embalagem de Alimentos/métodos , Madeira/química , Lipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/química , Antibacterianos/farmacologia , Viscosidade , Musa/química , Água/química , Bactérias Gram-Negativas/efeitos dos fármacos , Frutas/química
2.
Environ Sci Technol ; 57(41): 15523-15532, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37792456

RESUMO

Even with particular interest in sustainable development, due to the limited types of bioavailable carbon sources that could support heterotrophic/mixotrophic growth, microalgae-derived products still suffer from inconsistent yield and high costs. This study demonstrates a successful cocultivation of the photoautotroph Chlorella vulgaris with a hydrolytic-enzyme-abundant heterotroph, Saccharomycopsis fibuligera, enabling efficient starch upcycling from water/wastewater toward enhancing microalgae-dominant biomass and lipid production. The enzymatic activities of S. fibuligera contributed to the hydrolysis of starch into glucose, generating a 7-fold higher biomass through mixotrophic/heterotrophic growth of C. vulgaris. Further, scanning transmission electron microscopy (STEM) and quantitative analysis suggested a significantly induced accumulation of lipids in C. vulgaris. Results of meta-transcriptomics revealed the critical regulatory role of illumination in interaction shifting. Gene expression for glycolysis and lipid biosynthesis of C. vulgaris were highly activated during dark periods. Meanwhile, during illumination periods, genes coding for glucoamylase and the sulfur-related activities in S. fibuligera were significantly upregulated, leading to induced starch hydrolysis and potential increased competition for sulfur utilization, respectively. This study indicates that hydrolytic organisms could collaborate to make starch bioavailable for nonhydrolytic microalgae, thus broadening the substrate spectrum and making starch a novel biotechnological feedstock for microalgae-derived products, e.g., biofuels or single-cell protein.


Assuntos
Chlorella vulgaris , Microalgas , Chlorella vulgaris/metabolismo , Águas Residuárias , Amido/metabolismo , Técnicas de Cocultura , Hidrólise , Biomassa , Lipídeos , Enxofre/metabolismo , Microalgas/metabolismo , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...