Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 11(1): 225, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513263

RESUMO

BACKGROUND: Acetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components. This study aimed to investigate whether plasma membrane vesicles (PMVs) from human umbilical cord mesenchymal stem cells (hUCMSCs) could be exploited as a novel stem cell therapy for APAP-induced liver injury. METHODS: PMVs from hUCMSCs were prepared with an improved procedure including a chemical enucleation step followed by a mechanical extrusion. PMVs of hUCMSCs were characterized and supplemented to hepatocyte cultures. Rescue of APAP-induced hepatocyte damage was evaluated. RESULTS: The hUCMSCs displayed typical fibroblastic morphology and multipotency when cultivated under adipogenic, osteogenic, or chondrogenic conditions. PMVs of hUCMSCs maintained the stem cell phenotype, including the presence of CD13, CD29, CD44, CD73, and HLA-ABC, but the absence of CD45, CD117, CD31, CD34, and HLA-DR on the plasma membrane surface. RT-PCR and transcriptomic analyses showed that PMVs were similar to hUCMSCs in terms of mRNA profile, including the expression of stemness genes GATA4/5/6, Nanog, and Oct1/2/4. GO term analysis showed that the most prominent reduced transcripts in PMVs belong to integral membrane components, extracellular vesicular exosome, and extracellular matrix. Immunofluorescence labeling/staining and confocal microscopy assays showed that PMVs enclosed cellular organelles, including mitochondria, lysosomes, proteasomes, and endoplasmic reticula. Incorporation of the fusogenic VSV-G viral membrane glycoprotein stimulated the endosomal release of PMV contents into the cytoplasm. Further, the addition of PMVs and a mitochondrial-targeted antioxidant Mito-Tempo into cultures of APAP-treated HepG2 cells resulted in reduced cell death, enhanced viability, and increased mitochondrial membrane potential. Lastly, this study demonstrated that the redox state and activities of aminotransferases were restored in APAP-treated HepG2 cells. CONCLUSIONS: The results suggest that PMVs from hUCMSCs could be used as a novel stem cell therapy for the treatment of APAP-induced liver injury.


Assuntos
Acetaminofen , Células-Tronco Mesenquimais , Acetaminofen/toxicidade , Diferenciação Celular , Membrana Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Hep G2 , Humanos , Cordão Umbilical
2.
Eur J Cell Biol ; 98(5-8): 151045, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563281

RESUMO

Enucleated mammalian cells (cytoplasts) have been widely used for studying differential roles of the cytoplasm and nucleus in various cellular processes. Here, we reported an improved enucleation protocol, in which cells were seeded in extracellular matrix (ECM)-coated 24-wells and spun at 4600 g and 35 °C for 60 min in the presence of cytochalasin B and colchicine. When glass-bottom wells were used, cellular structures and organelles in cytoplasts could be examined directly by confocal microscopy. Nuclear envelope rupture did not occur probably due to mild centrifugation conditions used in this study. Addition of paclitaxel or doxorubicin completely blocked proliferation of residual nucleated cells; however, to our surprise, paclitaxel dramatically prolonged the survival of cytoplasts. Results from Annexin V and Propidium Iodide staining showed that cytoplasts died predominantly by apoptosis, which was partially inhibited by ECM and further by paclitaxel. Mitochondria were mostly rod-shaped and formed a connected network in paclitaxel-treated cytoplasts, indicating lack of fusion and fission dynamics. Moreover, paclitaxel increased mitochondrial membrane potential, suggesting that perturbation of mitochondria might be critical to the survival of cytoplasts. In conclusion, we had established an efficient and fast procedure for enucleation of adherent animal cells, which could facilitate the investigation of nucleocytoplasmic interaction.


Assuntos
Núcleo Celular/metabolismo , Colchicina/metabolismo , Citoplasma/metabolismo , Matriz Extracelular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/química , Colchicina/química , Citoplasma/química , Matriz Extracelular/química , Humanos , Imagem Óptica
3.
J Vis Exp ; (123)2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28570530

RESUMO

We have previously reported on the generation of plasma membrane vesicles (PMVs) through the mechanical extrusion of mammalian cells. The fusion of PMVs with mitochondrial deficient Rho0 cells restored mitotic activity under normal culture conditions. Atherosclerosis, type 2 diabetes, Alzheimer's disease, and cancer are age-related diseases that have been reported to be associated with multiple mechanical and functional defects in the cytosol and organelles of a variety of cell types. Bone marrow mesenchymal stem cells (BMSCs) represent a unique cell population from the bone marrow that possess self-renewal capabilities while maintaining their multipotency. The supplementation of senescence cells with young cytoplasm from autologous BMSCs via the fusion of PMVs provides a promising approach to ameliorate or even reverse age-associated phenotypes. This protocol describes how to prepare PMVs from BMSCs via extrusion through a polycarbonate membrane with 3 µm pores, determine the existence of mitochondria and examine the maintenance of membrane potential within PMVs using a confocal microscope, concentrate PMVs by centrifugation, and carry out the in vivo injection of PMVs into the gastrocnemius muscle of mice.


Assuntos
Micropartículas Derivadas de Células/transplante , Citoplasma/transplante , Células-Tronco Mesenquimais/citologia , Animais , Fusão Celular , Membrana Celular/ultraestrutura , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Cimento de Policarboxilato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...