Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Bioinspir Biomim ; 19(2)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346329

RESUMO

This paper proposes a generalized spring-loaded inverted pendulum (G-SLIP) model to explore various popular reduced-order dynamic models' characteristics and suggest a better robot leg design under specified performance indices. The G-SLIP model's composition can be varied by changing the model's parameters, such as ground contacting type and spring property. It can be transformed into four widely used models: the spring-loaded inverted pendulum (SLIP) model, the two-segment leg model, the SLIP with rolling foot model, and the rolling SLIP model. The effects of rolling contact and spring configuration on the dynamic behavior and fixed-point distribution of the G-SLIP model were analyzed, and the basins of attraction of the four described models were studied. By varying the parameters of the G-SLIP model, the dynamic behavior of the model can be optimized. Optimized for general locomotion running at various speeds, the model provided leg design guidelines. The leg was empirically fabricated and installed on the hexapod for experimental evaluation. The results indicated that the robot with a designed leg runs faster and is more power-efficient.


Assuntos
Robótica , Animais , Robótica/métodos , Modelos Biológicos , Locomoção , , Insetos , Fenômenos Biomecânicos , Perna (Membro) , Marcha
3.
Mol Oncol ; 18(3): 562-579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279565

RESUMO

Notch signaling is aberrantly activated in approximately 30% of hepatocellular carcinoma (HCC), significantly contributing to tumorigenesis and disease progression. Expression of the major Notch receptor, NOTCH1, is upregulated in HCC cells and correlates with advanced disease stages, although the molecular mechanisms underlying its overexpression remain unclear. Here, we report that expression of the intracellular domain of NOTCH1 (NICD1) is upregulated in HCC cells due to antagonism between the E3-ubiquitin ligase F-box/WD repeat-containing protein 7 (FBXW7) and the large scaffold protein abnormal spindle-like microcephaly-associated protein (ASPM) isoform 1 (ASPM-i1). Mechanistically, FBXW7-mediated polyubiquitination and the subsequent proteasomal degradation of NICD1 are hampered by the interaction of NICD1 with ASPM-i1, thereby stabilizing NICD1 and rendering HCC cells responsive to stimulation by Notch ligands. Consistently, downregulating ASPM-i1 expression reduced the protein abundance of NICD1 but not its FBXW7-binding-deficient mutant. Reinforcing the oncogenic function of this regulatory module, the forced expression of NICD1 significantly restored the tumorigenic potential of ASPM-i1-deficient HCC cells. Echoing these findings, NICD1 was found to be strongly co-expressed with ASPM-i1 in cancer cells in human HCC tissues (P < 0.001). In conclusion, our study identifies a novel Notch signaling regulatory mechanism mediated by protein-protein interaction between NICD1, FBXW7, and ASPM-i1 in HCC cells, representing a targetable vulnerability in human HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Neoplasias Hepáticas/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
4.
Cell Death Dis ; 15(1): 24, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195677

RESUMO

ATP and its receptor P2RX7 exert a pivotal effect on antitumor immunity during chemotherapy-induced immunogenic cell death (ICD). Here, we demonstrated that TNFα-mediated PANX1 cleavage was essential for ATP release in response to chemotherapy in colorectal cancer (CRC). TNFα promoted PANX1 cleavage via a caspase 8/3-dependent pathway to enhance cancer cell immunogenicity, leading to dendritic cell maturation and T-cell activation. Blockade of the ATP receptor P2RX7 by the systemic administration of small molecules significantly attenuated the therapeutic efficacy of chemotherapy and decreased the infiltration of immune cells. In contrast, administration of an ATP mimic markedly increased the therapeutic efficacy of chemotherapy and enhanced the infiltration of immune cells in vivo. High PANX1 expression was positively correlated with the recruitment of DCs and T cells within the tumor microenvironment and was associated with favorable survival outcomes in CRC patients who received adjuvant chemotherapy. Furthermore, a loss-of-function P2RX7 mutation was associated with reduced infiltration of CD8+ immune cells and poor survival outcomes in patients. Taken together, these results reveal that TNFα-mediated PANX1 cleavage promotes ATP-P2RX7 signaling and is a key determinant of chemotherapy-induced antitumor immunity.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Fator de Necrose Tumoral alfa , Ativação Linfocitária , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Trifosfato de Adenosina , Microambiente Tumoral , Proteínas do Tecido Nervoso , Conexinas/genética , Receptores Purinérgicos P2X7/genética
5.
Rheumatol Adv Pract ; 7(3): rkad085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937178

RESUMO

Objectives: RA is an autoimmune disease characterized by chronic inflammation and joint destruction. Biologics are crucial to achieving treat-to-target goals in patients with RA. The global spread and continuous variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitate the monitoring of variant-specific humoral responses post-vaccination. The aim of this study was to investigate how different biologic treatments for vaccinated RA patients might affect their neutralizing antibodies against multiple SARS-CoV-2 variants. Methods: We recruited RA patients who had received three doses of conventional SARS-CoV-2 vaccines and were treated with various biologics, e.g. TNF inhibitor (etanercept), IL-6 inhibitor (tocilizumab), CTLA4-Ig (abatacept) or anti-CD20 (rituximab). Serum samples were used to profile the binding and neutralizing antibodies using our own SARS-CoV-2 variant (CoVariant) protein array, developed previously. Results: Compared with healthy controls, only RA therapy with rituximab showed a reduction in neutralizing antibodies capable of targeting spike proteins in SARS-CoV-2 wild-type and most variants. This reduction was not observed in binding antibodies against SARS-CoV-2 wild-type or its variants. Conclusion: After receiving three doses of SARS-CoV-2 vaccination, RA patients who underwent rituximab treatment generated sufficient antibodies but exhibited lower neutralizing activities against wild-type and multiple variants, including current Omicron. Other biological DMARDs, e.g. TNF inhibitor, IL-6 inhibitor and CTLA4-Ig, did not show obvious inhibition.

6.
Anal Chem ; 95(41): 15217-15226, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37800729

RESUMO

Dengue is a viral disease transmitted by Aedes aegypti mosquitoes. According to the World Health Organization, about half of the world's population is at risk of dengue. There are four serotypes of the dengue virus. After infection with one serotype, it will be immune to such a serotype. However, subsequent infection with other serotypes will increase the risk of severe outcomes, e.g., dengue hemorrhagic fever, dengue shock syndrome, and even death. Since severe dengue is challenging to predict and lacks molecular markers, we aim to build a multiplexed Flavivirus protein microarray (Flaviarray) that includes all of the common Flaviviruses to profile the humoral immunity and cross-reactivity in the dengue patients with different outcomes. The Flaviarrays we fabricated contained 17 Flavivirus antigens with high reproducibility (R-square = 0.96) and low detection limits (172-214 pg). We collected serums from healthy subjects (n = 36) and dengue patients within 7 days after symptom onset (mild dengue (n = 21), hospitalized nonsevere dengue (n = 29), and severe dengue (n = 36)). After profiling the serum antibodies using Flaviarrays, we found that patients with severe dengue showed higher IgG levels against multiple Flavivirus antigens. With logistic regression, we found groups of markers with high performance in distinguishing dengue patients from healthy controls as well as hospitalized from mild cases (AUC > 0.9). We further reported some single markers that were suitable to separate dengue patients from healthy controls (AUC > 0.9) and hospitalized from mild outcomes (AUC > 0.8). Together, Flaviarray is a valuable tool to profile antibody specificities, uncover novel markers for decision-making, and shed some light on early preventions and treatments.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Dengue Grave , Animais , Humanos , Dengue/diagnóstico , Anticorpos Antivirais , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Antígenos Virais
7.
Biosens Bioelectron ; 241: 115709, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776623

RESUMO

The continuous mutation of SARS-CoV-2 highlights the need for rapid, cost-effective, and high-throughput detection methods. To better analyze the antibody levels against SARS-CoV-2 and its variants in vaccinated or infected subjects, we developed a multiplex detection named Barcode Bead Fluorescence (BBF) assay. These barcode beads were magnetic, characterized by 2-dimensional edges, highly multiplexed, and could be decrypted with visible light. We conjugated 12 magnetic barcode beads with corresponding nine spike proteins (wild-type, alpha, beta, gamma, delta, and current omicrons), two nucleocapsid proteins (wild-type and omicron), and one negative control. First, the conjugated beads underwent serial quality controls via fluorescence labeling, e.g., reproducibility (R square = 0.99) and detection limits (119 pg via anti-spike antibody). Next, we investigated serums from vaccinated subjects and COVID-19 patients for clinical applications. A significant reduction of antibody levels against all variant beads was observed in both vaccinated and COVID-19 studies. Subjects with two doses of mRNA-1273 exhibited the highest level of antibodies against all spike variants compared to two doses of AZD1222 and unvaccinated. We also found that COVID-19 patients showed higher antibody levels against spike beads from wild-type, alpha, beta, and delta. Finally, the nucleocapsid beads served as markers to distinguish infections from vaccinated subjects. Overall, this study developed the BBF assay for analyzing humoral immune responses, which has the advantages of robustness, automation, scalability, and cost-effectiveness.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , ChAdOx1 nCoV-19 , Reprodutibilidade dos Testes , Anticorpos Antivirais
8.
Sci Total Environ ; 905: 167010, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722421

RESUMO

As an emerging environmental pollutant, nanoplastics (NPs) have attracted wide attention in terms of their impact on the ecological environment and human health. Currently, researches on the cytotoxicity of NPs mainly focus on oxidative stress, damage to the cell membrane and organelles, induction of immune response and genotoxicity. Okadaic acid (OA) is the main component of diarrheal shellfish toxin. Based on the previous combined toxicity exploration of polystyrene (PS) NPs and (OA) to human gastric adenocarcinoma (AGS) cells, cell-derived exosomes were extracted and exosomal miRNA profiles were analyzed for the first time in this study. The results showed that the composition of miRNAs varied after the exposure of NPs and OA. Specifically, the expression of miR-1-3p in both PS-Exo and PS-OA-Exo was significantly reduced. And the expression of miR-1248 was upregulated most significantly by comparing the DE miRNAs between PS-Exo and PS-OA-Exo. MiR-1-3p and miR-1248 may be the key genes for the combined toxicity of NPs and OA. After analysis, we found that both the decreased expression of miR-1-3p and the increased expression of miR-1248 can increase the expression of FN1 and affect DNA replication, which was surprisingly consistent with the results of our previous cytotoxicity studies. Since exosomal miRNAs are selectively encapsulated by donor cell, we speculate that the changes of exosomal miRNAs may due to the synchronous changes of intracellular environment and the downregulation of intracellular FN1 may be attributed to decreased expression of miR-1-3p and increased expression of miR-1248 in donor cells. Accordingly, we come to the conclusion that the changes of miRNAs in the exosomes derived from AGS cells after environmental stimulation could reflect the biological effects of donor cells.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Ácido Okadáico/toxicidade , Regulação para Baixo
9.
Analyst ; 148(19): 4698-4709, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37610260

RESUMO

Kawasaki disease (KD) is a form of acute systemic vasculitis syndrome that predominantly occurs in children under the age of 5 years. Its etiology has been postulated due to not only genetic factors but also the presence of foreign antigens or infectious agents. To evaluate possible associations between Kawasaki disease (KD) and COVID-19, we investigated humoral responses of KD patients against S-protein variants with SARS-CoV-2 variant protein microarrays. In this study, plasma from a cohort of KD (N = 90) and non-KD control (non-KD) (N = 69) subjects in categories of unvaccinated-uninfected (pre-pandemic), SARS-CoV-2 infected (10-100 days after infection), and 1-dose, 2-dose, and 3-dose BNT162b2 vaccinated (10-100 days after vaccination) was collected. The principal outcomes were non-KD-KD differences for each category in terms of anti-human/anti-His for binding antibodies and neutralizing percentage for surrogate neutralizing antibodies. Binding antibodies against spikes were lower in the KD subjects with 1-dose of BNT162b2, and mean differences were significant for the P.1 S-protein (non-KD-KD, 3401; 95% CI, 289.0 to 6512; P = 0.0252), B.1.617.2 S-protein (non-KD-KD, 4652; 95% CI, 215.8 to 9087; P = 0.0351) and B.1.617.3 S-protein (non-KD-KD, 4874; 95% CI, 31.41 to 9716; P = 0.0477). Neutralizing antibodies against spikes were higher in the KD subjects with 1-dose of BNT162b2, and mean percentage differences were significant for the 1-dose BNT162b2 B.1.617.3 S-protein (non-KD-KD, -22.89%; 95% CI, -45.08 to -0.6965; P = 0.0399), B.1.1.529 S-protein (non-KD-KD, -25.96%; 95% CI, -50.53 to -1.376; P = 0.0333), BA.2.12.1 S-protein (non-KD-KD, -27.83%; 95% CI, -52.55 to -3.115; P = 0.0195), BA.4 S-protein (non-KD-KD, -28.47%; 95% CI, -53.59 to -3.342; P = 0.0184), and BA.5 S-protein (non-KD-KD, -30.42%; 95% CI, -54.98 to -5.869; P = 0.0077). In conclusion, we have found that KD patients have a comparable immunization response to healthy individuals to SARS-CoV-2 infection and COVID-19 immunization.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Pré-Escolar , SARS-CoV-2/genética , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Vacina BNT162 , Análise Serial de Proteínas , Vacinação , Imunização , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240438

RESUMO

Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.


Assuntos
Infecções por Caliciviridae , Norovirus , Humanos , Norovirus/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Caliciviridae/genética
11.
ACS Appl Mater Interfaces ; 15(22): 26227-26240, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226779

RESUMO

Osteosarcoma is prone to metastasis and has a low long-term survival rate. The drug treatment of osteosarcoma, side effects of treatment drugs, and prognosis of patients with lung metastasis continue to present significant challenges, and the efficacy of drugs used in the treatment of osteosarcoma remains low. The development of new therapeutic drugs is urgently needed. In this study, we successfully isolated Pinctada martensii mucilage exosome-like nanovesicles (PMMENs). Our findings demonstrated that PMMENs inhibited the viability and proliferation of 143B cells, induced apoptosis, and inhibited cell proliferation by suppressing the activation of the ERK1/2 and Wnt signaling pathways. Furthermore, PMMENs inhibited cell migration and invasion by downregulating N-cadherin, vimentin, and matrix metalloprotease-2 protein expression levels. Transcriptomic and metabolomic analyses revealed that differential genes were co-enriched with differential metabolites in cancer signaling pathways. These results suggest that PMMENs may exert anti-tumor activity by targeting the ERK1/2 and Wnt signaling pathways. Moreover, tumor xenograft model experiments showed that PMMENs can inhibit the growth of osteosarcoma in mice. Thus, PMMENs may be a potential anti-osteosarcoma drug.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , Pinctada , Humanos , Animais , Camundongos , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Apoptose , Proliferação de Células , Via de Sinalização Wnt , Osteossarcoma/metabolismo , Movimento Celular
12.
Bioinspir Biomim ; 18(3)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947883

RESUMO

We report on the development of separated and laterally arranged two-leg (SLTL) models with/without differentiated leg properties and their use as the dynamic running and turning templates for a hexapod robot. The laterally arranged two-leg morphology enables differential driving for turning. The differentiable leg settings, such as stiffness, enables the model to adopt unbalanced leg arrangements of empirical legged gaits, such as a tripod gait, into consideration. The fixed-point motion of the model was utilized as the main methodology to plan dynamic running and turning, in which the plot of one-step distance versus period was constructed for the legs' operation point selection and matching. The proposed methodology was experimentally validated using four indices: turning curvature, flight phase, motion stability, and energy efficiency. The experimental results show that the running robot using the SLTL model with differentiated leg stiffness has better energy efficiency than one without by 4%, while the latter model has identical performance to the original spring-loaded inverted pendulum model with rolling contact. As for turning, the robot using the SLTL models with/without differentiated leg stiffness can preserve dynamic turning in all experiments with turning curvatures up to0.28m-1and0.30m-1, respectively,33%and43%more than the robot using the original model-less phase-shift turning strategy (0.21 m-1). Using the proposed model-based strategy, the flight phase of the robot turning in all curvatures (including straight running) maintains around 20%, the root-mean-squared (RMS) values of pitch and roll remains less than3 deg, and the specific resistance (SR) is bounded between0.64 and 0.73. By contrast, the robot using the phase-shifting turning strategy can maintain dynamic motion up to a turning curvature of0.21 m-1. A further increase in phase shifting not only does not increase the turning curvature but also changes the robot motion from running to walking. In this case, no flight phase exists, theSRjumps up significantly, and RMS values of pitch and roll also increase dramatically. In short, the experimental validation confirms the effectiveness of the proposed methodology for initiating the dynamic running and turning of the robot.


Assuntos
Robótica , Animais , Modelos Biológicos , Marcha , Caminhada , Movimento (Física) , Insetos
13.
J Air Transp Manag ; 109: 102382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36909202

RESUMO

This research investigates the number of on-time flights (OTFs) at European airports and how this number is influenced by an airport's flight connectivity. We conduct a spatial statistical analysis of the spatial context relationship using econometric models, and the interaction between the number of airport's on-time flights (OTFs) and flight connectivity. Using 2017 and 2018 data, we characterize the relationship between a European airport's air connectivity index (ACI) and the number of flights that depart or arrive at a gate within 15 min of schedule (OTFs). We also analyze the relationship between OTFs at a given airport and those of neighboring airports. As the distances between airports increase, autocorrelation shifts from a positive to a negative sign meaning that at greater distances, airports' on-time performance is less dissimilar. We find that before the pandemic and the ensuing global travel shutdown, a spatially lagged term of ACI improves the model's ability to account for variations in OTFs across airports. Flight delay propagation in the air transport system caused delays to occur due to the shared resources underlying an initially delayed flight and subsequent flights. This analysis offers a rational for increasing airport connectivity as a way of improving the share of on-time flights of European airports.

14.
Medicine (Baltimore) ; 102(12): e33318, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961191

RESUMO

Patients with type 2 diabetes are at a higher risk of chronic obstructive pulmonary disease (COPD) and asthma than the general population. In addition, emerging evidence suggests that traditional Chinese medicine (TCM) might be beneficial for patients with type 2 diabetes. We investigated whether TCM use was associated with a reduced risk of respiratory hospitalizations in patients with type 2 diabetes. Conducting a retrospective cohort study, we used data retrieved from the NDCMP database. Among 56,035 patients, 5226 were classified as TCM users; 50,809 were classified as TCM nonusers. Both groups were analyzed until the end of 2011 to examine the incidence of respiratory hospitalizations by using a Cox proportional hazards model to evaluate effects of TCM use on respiratory hospitalizations. During the 6-year study follow-up period, the incidence density rates of COPD- and asthma-related hospitalization were estimated to be 13.03 and 4.47 per 10,000 patient-years for TCM nonusers and 10.08 and 3.28 per 10,000 patient-years for TCM users, respectively. The HR of COPD-related hospitalization in TCM users was 0.88 (95% CI = 0.79-0.99); and the HR of asthma-related hospitalization in TCM users was 0.81 (95% CI = 0.66-1.00). Stratified analyses revealed that effects of TCM use were stronger among individuals who had diabetes for <3 years. As a part of Integrative Medicine, our study results demonstrate that TCM use was associated with a significant reduced risk of respiratory hospitalizations, especially in patients with diabetes for <3 years.


Assuntos
Asma , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Humanos , Medicina Tradicional Chinesa/métodos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Medicamentos de Ervas Chinesas/efeitos adversos , Estudos Retrospectivos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/terapia , Asma/tratamento farmacológico , Asma/epidemiologia , Hospitalização , Taiwan/epidemiologia
16.
Cancer Immunol Res ; 11(1): 123-136, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36315960

RESUMO

The potency of tumor-specific antigen (TSA) vaccines, such as neoantigen (neoAg)-based cancer vaccines, can be compromised by host immune checkpoint inhibitory mechanisms, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), that attenuate neoAg presentation on dendritic cells (DC) and hinder T cell-mediated cytotoxicity. To overcome PD-1/PD-L1 inhibition in DCs, we developed a novel adeno-associated virus (meAAV) neoAg vaccine, modified with TLR9 inhibitory fragments, PD-1 trap, and PD-L1 miRNA, which extend the persistence of meAAV and activate neoAg-specific T-cell responses in immune-competent colorectal and breast cancer murine models. Moreover, we found that in combination with radiotherapy, the meAAV-based neoAg cancer vaccine not only elicited higher antigen presentation ability, but also maintained neoAg-specific cytotoxic T lymphocyte (CTL) responses. These functional PD-1 traps and PD-L1 miRNAs overcome host PD-1/PD-L1 inhibitory mechanisms and boost the therapeutic efficacy of radiotherapy. More importantly, combined radiotherapy and meAAV neoAg cancer vaccines significantly enhanced neoAg-specific CTL responses, increased CTL infiltration in tumor microenvironment, and decreased tumor-associated immunosuppression. This process led to the complete elimination of colorectal cancer and delayed tumor growth of breast cancer in tumor-bearing mice. Taken together, our results demonstrated a novel strategy that combines neoAg cancer vaccine and radiotherapy to increase the therapeutic efficacy against colorectal and breast cancers.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , MicroRNAs , Camundongos , Animais , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Linfócitos T Citotóxicos , MicroRNAs/genética , Neoplasias Colorretais/terapia , Microambiente Tumoral
17.
Ecotoxicol Environ Saf ; 249: 114375, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508836

RESUMO

Microplastics (MPs) are widespread in the environment and can be ingested through food, water, and air, posing a threat to human health. In addition, MPs can have a potential combined effect with other toxic compounds. Polystyrene (PS) has been shown to enhance the cytotoxicity of okadaic acid (OA). However, it remains unclear whether this enhancement effect is related to the size of PS particles. In this study, we investigated the mechanism of the combined effect of PS microplastics (PS-MPs) or PS nanoplastics (PS-NPs) and OA on Caco-2 cells. The results indicated that PS-NPs enhanced the cytotoxicity of OA and induced endoplasmic reticulum (ER) stress-mediated apoptosis in Caco-2 cells, compared to PS-MPs. Specifically, PS-NPs and OA cause more severe oxidative stress, lactate dehydrogenase (LDH) release, and mitochondrial membrane depolarization. Furthermore, it induced intracellular calcium overload through store-operated channels (SOCs) and activated the PERK/ATF-4/CHOP pathway to cause ER stress. ER stress promoted mitochondrial damage and finally activated the caspase family to induce apoptosis. This study provided an indirect basis for the assessment of the combined toxicity of MPs or NPs with OA.


Assuntos
Apoptose , Microplásticos , Ácido Okadáico , Poliestirenos , Poluentes Químicos da Água , Humanos , Apoptose/efeitos dos fármacos , Células CACO-2 , Microplásticos/toxicidade , Ácido Okadáico/toxicidade , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
18.
J Biomed Sci ; 29(1): 102, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457101

RESUMO

BACKGROUND: yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS: The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS: After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS: Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.


Assuntos
Salmonella typhimurium , Transcriptoma , Humanos , Salmonella typhimurium/genética , NAD , Ubiquinona , Células CACO-2 , Peróxido de Hidrogênio/farmacologia , Vitamina K 2 , Respiração Celular , Estresse Oxidativo/genética , Trifosfato de Adenosina , Carboidratos
19.
Biochem Biophys Res Commun ; 634: 10-19, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36228540

RESUMO

Extracellular vesicles (EVs) and their exosome subsets are vesicle-like nanoparticles (EVs) that are secreted by cells and contain various factors that treat various diseases. However, studies on extracting EVs from marine shellfish are still relatively lacking. In this study, EVs were isolated from Pinctada martensii mucus and the efficacy of EVs in modulating the inflammatory environment was demonstrated. A human skin inflammatory cell model was established to investigate the effect of Pinctada martensii mucus-derived EVs on inflammation. The results showed that EVs could restore the viability of inflammatory HaCaT cells and decrease the level of reactive oxygen species (ROS), as well as the mRNA expression of IL-6, IL-8 and TNF-α. The inflammation of HaCaT cells was treated by inhibiting the activation of the MAPK, NF-κB and NLRP3 inflammasome signaling pathways, which prevented the phosphorylation of related inflammatory proteins and the entry of P65 protein into the nucleus. This study provides novel EVs from marine shellfish-derived bioactive materials.


Assuntos
Dermatite , Vesículas Extracelulares , Pinctada , Animais , Humanos , Vesículas Extracelulares/metabolismo , Inflamassomos/metabolismo , Inflamação , Muco/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pinctada/metabolismo , Proteínas Quinases Ativadas por Mitógeno
20.
Inf Syst Front ; : 1-15, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36118952

RESUMO

With the increasing penetration of renewable energy, uncertainty has become the main challenge of power systems operation. Fortunately, system operators could deal with the uncertainty by adopting stochastic optimization (SO), robust optimization (RO) and distributionally robust optimization (DRO). However, choosing a good decision takes much experience, which can be difficult when system operators are inexperienced or there are staff shortages. In this paper, a decision-making approach containing robotic assistance is proposed. First, advanced clustering and reduction methods are used to obtain the scenarios of renewable generation, thus constructing a scenario-based ambiguity set of distributionally robust unit commitment (DR-UC). Second, a DR-UC model is built according to the above time-series ambiguity set, which is solved by a hybrid algorithm containing improved particle swarm optimization (IPSO) and mathematical solver. Third, the above model and solution algorithm are imported into robots that assist in decision making. Finally, the validity of this research is demonstrated by a series of experiments on two IEEE test systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...