Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687251

RESUMO

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.

2.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014106

RESUMO

Microgliosis and neuroinflammation are prominent features of Alzheimer's disease (AD). Disease-responsive microglia meet their increased energy demand by reprogramming metabolism, specifically, switching to favor glycolysis over oxidative phosphorylation. Thus, targeting of microglial immunometabolism might be of therapeutic benefit for treating AD, providing novel and often well understood immune pathways and their newly recognized actions in AD. We report that in the brains of 5xFAD mice and postmortem brains of AD patients, we found a significant increase in the levels of Hexokinase 2 (HK2), an enzyme that supports inflammatory responses by rapidly increasing glycolysis. Moreover, binding of HK2 to mitochondria has been reported to regulate inflammation by preventing mitochondrial dysfunction and NLRP3 inflammasome activation, suggesting that its inflammatory role extends beyond its glycolytic activity. Here we report, that HK2 antagonism selectively affects microglial phenotypes and disease progression in a gene-dose dependent manner. Paradoxically, complete loss of HK2 fails to improve AD progression by exacerbating inflammasome activity while its haploinsufficiency results in reduced pathology and improved cognition in the 5XFAD mice. We propose that the partial antagonism of HK2, is effective in slowed disease progression and inflammation through a non-metabolic mechanism associated with the modulation of NFKß signaling, through its cytosolic target IKBα. The complete loss of HK2 affects additional inflammatory mechanisms associated to mitochondrial dysfunction.

3.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659412

RESUMO

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Estudos de Associação Genética , Microglia , Fagocitose/genética , Fenótipo , Placa Amiloide , Fosfolipase C gama/metabolismo
4.
Alzheimers Dement ; 19(6): 2528-2537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524682

RESUMO

INTRODUCTION: Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer's disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear. METHODS: We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis. RESULTS: Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aß). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation. CONCLUSION: These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Microglia/metabolismo , Placa Amiloide/patologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
5.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187758

RESUMO

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

6.
Mol Neurodegener ; 17(1): 47, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764973

RESUMO

BACKGROUND: Despite its identification as a key checkpoint regulator of microglial activation in Alzheimer's disease, the overarching role of CX3CR1 signaling in modulating mechanisms of Aß driven neurodegeneration, including accumulation of hyperphosphorylated tau is not well understood. METHODOLOGY: Accumulation of soluble and insoluble Aß species, microglial activation, synaptic dysregulation, and neurodegeneration is investigated in 4- and 6-month old 5xFAD;Cx3cr1+/+ and 5xFAD;Cx3cr1-/- mice using immunohistochemistry, western blotting, transcriptomic and quantitative real time PCR analyses of purified microglia. Flow cytometry based, in-vivo Aß uptake assays are used for characterization of the effects of CX3CR1-signaling on microglial phagocytosis and lysosomal acidification as indicators of clearance of methoxy-X-04+ fibrillar Aß. Lastly, we use Y-maze testing to analyze the effects of Cx3cr1 deficiency on working memory. RESULTS: Disease progression in 5xFAD;Cx3cr1-/- mice is characterized by increased deposition of filamentous plaques that display defective microglial plaque engagement. Microglial Aß phagocytosis and lysosomal acidification in 5xFAD;Cx3cr1-/- mice is impaired in-vivo. Interestingly, Cx3cr1 deficiency results in heighted accumulation of neurotoxic, oligomeric Aß, along with severe neuritic dystrophy, preferential loss of post-synaptic densities, exacerbated tau pathology, neuronal loss and cognitive impairment. Transcriptomic analyses using cortical RNA, coupled with qRT-PCR using purified microglia from 6 month-old mice indicate dysregulated TGFß-signaling and heightened ROS metabolism in 5xFAD;Cx3cr1-/- mice. Lastly, microglia in 6 month-old 5xFAD;Cx3cr1-/- mice express a 'degenerative' phenotype characterized by increased levels of Ccl2, Ccl5, Il-1ß, Pten and Cybb along with reduced Tnf, Il-6 and Tgfß1 mRNA. CONCLUSIONS: Cx3cr1 deficiency impairs microglial uptake and degradation of fibrillar Aß, thereby triggering increased accumulation of neurotoxic Aß species. Furthermore, loss of Cx3cr1 results in microglial dysfunction typified by dampened TGFß-signaling, increased oxidative stress responses and dysregulated pro-inflammatory activation. Our results indicate that Aß-driven microglial dysfunction in Cx3cr1-/- mice aggravates tau hyperphosphorylation, neurodegeneration, synaptic dysregulation and impairs working memory.


Assuntos
Doença de Alzheimer , Amiloidose , Receptor 1 de Quimiocina CX3C , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide , Fator de Crescimento Transformador beta
9.
Genome Med ; 14(1): 17, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180881

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by robust microgliosis and phenotypic changes that accompany disease pathogenesis. Accumulating evidence from genetic studies suggests the importance of phospholipase C γ 2 (PLCG2) in late-onset AD (LOAD) pathophysiology. However, the role of PLCG2 in AD is still poorly understood. METHODS: Using bulk RNA-Seq (N=1249) data from the Accelerating Medicines Partnership-Alzheimer's Disease Consortium (AMP-AD), we investigated whether PLCG2 expression increased in the brains of LOAD patients. We also evaluated the relationship between PLCG2 expression levels, amyloid plaque density, and expression levels of microglia specific markers (AIF1 and TMEM119). Finally, we investigated the longitudinal changes of PLCG2 expression in the 5xFAD mouse model of AD. To further understand the role of PLCG2 in different signaling pathways, differential gene expression and co-expression network analyses were performed using bulk RNA-Seq and microglial single-cell RNA-Seq data. To substantiate the human analyses, we performed differential gene expression analysis on wild-type (WT) and inactivated Plcg2 mice and used immunostaining to determine if the differentially expressed genes/pathways were altered by microglial cell coverage or morphology. RESULTS: We observed significant upregulation of PLCG2 expression in three brain regions of LOAD patients and significant positive correlation of PLCG2 expression with amyloid plaque density. These findings in the human brain were validated in the 5xFAD amyloid mouse model, which showed disease progression-dependent increases in Plcg2 expression associated with amyloid pathology. Of note, increased Plcg2 expression levels in 5xFAD mice were abolished by reducing microglia. Furthermore, using bulk RNA-Seq data, we performed differential expression analysis by comparing cognitively normal older adults (CN) with 75th percentile (high) and 25th percentile (low) PLCG2 gene expression levels to identify pathways related to inflammation and the inflammatory response. The findings in the human brain were validated by differential expression analyses between WT and plcg2 inactivated mice. PLCG2 co-expression network analysis of microglial single-cell RNA-Seq data identified pathways related to the inflammatory response including regulation of I-kappaB/NF-kappa B signaling and response to lipopolysaccharide. CONCLUSIONS: Our results provide further evidence that PLCG2 plays an important role in AD pathophysiology and may be a potential target for microglia-targeted AD therapies.


Assuntos
Doença de Alzheimer , Placa Amiloide , Idoso , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia
10.
J Formos Med Assoc ; 121(1 Pt 2): 434-438, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33966940

RESUMO

Malaria is an infectious disease caused by Plasmodium parasites that are mainly transmitted through the bites of infected female Anopheles mosquitoes. The average annual number of malaria cases was less than ten in Taiwan in the last five years. Most of the cases were caused by Plasmodium vivax and Plasmodium falciparum, and were primarily diagnosed in travelers who returned from Southeast Asia and Africa. Here, we report the first case of Plasmodium ovale infection within five years that was confirmed by peripheral blood smear examination and molecular identification in a 25-year-old Asian female patient who returned from Uganda.


Assuntos
Malária , Plasmodium ovale , Adulto , África Oriental , Feminino , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Plasmodium ovale/genética , Taiwan
11.
Sci Adv ; 7(45): eabe3954, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34731000

RESUMO

Recently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer's disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid ß (Aß) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout ("Abi3−/−") mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aß accumulation and neuroinflammation.

12.
Front Aging Neurosci ; 13: 735524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707490

RESUMO

Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.

13.
Front Mol Neurosci ; 14: 682775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248500

RESUMO

Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that disrupts the normal neurological function of the brain. Clinical studies have reported a non-linear J-shaped association between alcohol consumption levels and the occurrence of cerebral stroke. Specifically, alcohol intoxication increases stroke incidence, while moderate alcohol pre-conditioning decreases stroke frequency and improves outcomes. Although alcohol pre-consumption is likely a crucial player in ICH, the underlying mechanism remains unclear. We performed 1-h alcohol pre-conditioning followed by ICH induction in Sprague-Dawley (SD) rats to investigate the role of alcohol pre-conditioning in ICH. Interestingly, behavioral test analysis found that ethanol intoxication (3 g/kg) aggravated ICH-induced neurological deficits, but moderate ethanol pre-conditioning (0.75 g/kg) ameliorated ICH-induced neurological deficits by reducing the oxidative stress and proinflammatory cytokines release. Moreover, we found that moderate ethanol pretreatment improved the striatal endoplasmic reticulum (ER) homeostasis by increasing the chaperone protein expression and reducing oxidative stress and apoptosis caused by ICH. Our findings show that the mechanism regulated by moderate ethanol pre-conditioning might be beneficial for ICH, indicating the importance of ER homeostasis, oxidative stress, and differential cytokines release in ICH.

14.
Neurobiol Dis ; 153: 105303, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631273

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, robust microgliosis, neuroinflammation, and neuronal loss. Genome-wide association studies recently highlighted a prominent role for microglia in late-onset AD (LOAD). Specifically, inositol polyphosphate-5-phosphatase (INPP5D), also known as SHIP1, is selectively expressed in brain microglia and has been reported to be associated with LOAD. Although INPP5D is likely a crucial player in AD pathophysiology, its role in disease onset and progression remains unclear. We performed differential gene expression analysis to investigate INPP5D expression in AD and its association with plaque density and microglial markers using transcriptomic (RNA-Seq) data from the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) cohort. We also performed quantitative real-time PCR, immunoblotting, and immunofluorescence assays to assess INPP5D expression in the 5xFAD amyloid mouse model. Differential gene expression analysis found that INPP5D expression was upregulated in LOAD and positively correlated with amyloid plaque density. In addition, in 5xFAD mice, Inpp5d expression increased as the disease progressed, and selectively in plaque-associated microglia. Increased Inpp5d expression levels in 5xFAD mice were abolished entirely by depleting microglia with the colony-stimulating factor receptor-1 antagonist PLX5622. Our findings show that INPP5D expression increases as AD progresses, predominantly in plaque-associated microglia. Importantly, we provide the first evidence that increased INPP5D expression might be a risk factor in AD, highlighting INPP5D as a potential therapeutic target. Moreover, we have shown that the 5xFAD mouse model is appropriate for studying INPP5D in AD.


Assuntos
Doença de Alzheimer/genética , Microglia/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Placa Amiloide/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Placa Amiloide/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq
15.
Biomolecules ; 10(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31935997

RESUMO

Intracerebral hemorrhage (ICH) causes an accumulation of blood in the brain parenchyma that disrupts the normal neurological function of the brain. Despite extensive clinical trials, no medical or surgical therapy has shown to be effective in managing ICH, resulting in a poor prognosis for the patients. Urocortin (UCN) is a 40-amino-acid endogenous neuropeptide that belongs to the corticotropin-releasing hormone (CRH) family. The effect of UCN is activated by binding to two G-protein coupled receptors, CRH-R1 and CRH-R2, which are expressed in brain neurons and glial cells in various brain regions. Current research has shown that UCN exerts neuroprotective effects in ICH models via anti-inflammatory effects, which generally reduced brain edema and reduced blood-brain barrier disruption. These effects gradually help in the improvement of the neurological outcome, and thus, UCN may be a potential therapeutic target in the treatment of ICH. This review summarizes the data published to date on the role of UCN in ICH and the possible protective mechanisms underlined.


Assuntos
Hemorragia Cerebral/metabolismo , Urocortinas/metabolismo , Urocortinas/farmacologia , Animais , Encéfalo/metabolismo , Hemorragia Cerebral/fisiopatologia , Hemorragia Cerebral/terapia , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Urocortinas/fisiologia
16.
Cells ; 8(11)2019 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-31717886

RESUMO

BACKGROUND: Neuroinflammation is a hallmark in intracerebral hemorrhage (ICH) that induces secondary brain injury, leading to neuronal cell death. ER stress-triggered apoptosis and proteostasis disruption caused neuroinflammation to play an important role in various neurological disorders. The consequences of ER stress and proteostasis disruption have rarely been studied during the course of ICH development. METHODS: ICH was induced by collagenase VII-S intrastriatal infusion. Animals were sacrificed at 0, 3, 6, 24, and 72 h post-ICH. Rats were determined for body weight changes, hematoma volume, and neurological deficits. Brain tissues were harvested for molecular signaling analysis either for ELISA, immunoblotting, immunoprecipitation, RT-qPCR, protein aggregation, or for histological examination. A non-selective proteasome inhibitor, MG132, was administered into the right striatum three hours prior to ICH induction. RESULTS: ICH-induced acute proteasome over-activation caused the early degradation of the endoplasmic reticulum (ER) chaperone GRP78 and IκB protein. These exacerbations were accompanied by the elevation of pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP) and pro-inflammatory cytokines expression via nuclear factor-kappa B (NF-κB) signal activation. Pre-treatment with proteasome inhibitor MG132 significantly ameliorated the ICH-induced ER stress/proteostasis disruption, pro-inflammatory cytokines, neuronal cells apoptosis, and neurological deficits. CONCLUSIONS: ICH induced rapid proteasome over-activation, leading to an exaggeration of the ER stress/proteostasis disruption, and neuroinflammation might be a critical event in acute ICH pathology.


Assuntos
Hemorragia Cerebral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Apoptose , Hemorragia Cerebral/fisiopatologia , Citocinas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/patologia , Leupeptinas/farmacologia , Masculino , NF-kappa B/metabolismo , Neuroimunomodulação/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
17.
J Stroke Cerebrovasc Dis ; 25(1): 15-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26387045

RESUMO

OBJECTIVE: Alcohol intoxication is associated with worse intracerebral hemorrhage (ICH) outcome, indicating the important role of alcohol in ICH pathogenesis. We intended to investigate the effects of ethanol pretreatment on the severity of ICH-induced brain injury in rats. METHODS: At 1 hour after intraperitoneal injection of ethanol (3 g/kg), 0.2 U bacterial collagenase was infused into the striatum of male Sprague-Dawley rats to induce ICH. Accumulative mortality rate, body weight changes, and motorsensory and neurological abnormalities were evaluated. The hemorrhagic volume, hematoma expansion, and water content were measured by Drabkin's method, morphometric assay, and dry/wet method, respectively. Blood-brain barrier disruption was assessed using Evans blue assay. Oxidative stress was evaluated by the enzymatic activity of glutathione peroxidase, oxidation of hydroethidine, and the production of malondialdehyde. Cerebral blood flow perfusion volume and hypo-/hyperperfusion neuroimaging were examined by magnetic resonance imaging. RESULTS: Ethanol pretreatment aggravates the hematoma hemolysis, hemorrhagic volume, hematoma expansion, brain edema, blood-brain barrier disruption, microglial activation, elevated oxidative stress, and neuroinflammation in the hemorrhagic striatum. The summation effect of these consequences is the major cause of marked neurological impairment and higher mortality rate (64%) in ethanol-pretreated rats with ICH. CONCLUSION: This is a novel model to evaluate the effects of high-dose alcohol administration on experimental ICH rats. IMPLICATIONS: The present study may provide clues for making novel strategies in the management of patients with ICH who overconsume alcoholic drinks before the attack.


Assuntos
Intoxicação Alcoólica/complicações , Dano Encefálico Crônico/etiologia , Hemorragia Cerebral/complicações , Corpo Estriado/patologia , Intoxicação Alcoólica/fisiopatologia , Animais , Barreira Hematoencefálica , Dano Encefálico Crônico/patologia , Edema Encefálico/etiologia , Hemorragia Cerebral/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Etanol/administração & dosagem , Etanol/toxicidade , Hematoma/etiologia , Inflamação , Injeções Intraperitoneais , Imageamento por Ressonância Magnética , Masculino , Microglia/patologia , Estresse Oxidativo , Imagem de Perfusão , Pré-Medicação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...