Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(8): 226, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879829

RESUMO

A bacterium, designated strain T21T, that is non-motile, rod-shaped, and formed pale white colonies, was isolated from the sludge of a wastewater treatment plant's secondary sedimentation tank in China. Strain T21T could grow at 20-40 °C (optimum growth at 30 °C), pH 3.0-10.0 (optimum growth at pH 5.0) and in the presence of 0-8.0% (w/v) NaCl (optimum growth at 2.0%). Based on phylogenetic analysis of 16S rRNA gene sequences and genome sequences, the isolate belongs to the genus Tessaracoccus in the phylum Actinomycetota. It exhibited a close relationship with Tessaracoccus palaemonis J1M15T, Tessaracoccus defluvii LNB-140T, Tessaracoccus flavescens SST-39T, and Tessaracoccus coleopterorum HDW20T. The 16S rRNA gene sequence similarities are 99.8%, 97.9%, 97.9%, and 97.8%, respectively. The major cellular fatty acids were anteiso-C15:0 and C16:0. The main respiratory quinone was MK-9(H4). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, glycolipid, and phospholipid. Genome annotation of strain T21T predicted the presence of 2829 genes, of which 2754 are coding proteins and 59 are RNA genes. The genomic DNA G+C content was 69.2%. Based on the results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, we propose the name Tessaracoccus lacteus sp. nov. for this novel species within the genus Tessaracoccus. The type strain is T21T (=CCTCC AB 2023031T = KCTC 49936T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Esgotos/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/análise , Águas Residuárias/microbiologia , China , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Análise de Sequência de DNA , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Quinonas/análise
2.
Toxics ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668492

RESUMO

Due to their significant environmental impact, there has been a gradual restriction of the production and utilization of legacy per- and polyfluoroalkyl substances (PFAS), leading to continuous development and adoption of novel alternatives. To effectively identify the potential environmental risks from crop consumption, the levels of 25 PFAS, including fourteen perfluoroalkyl acids (PFAAs), two precursor substances and nine novel alternatives, in agricultural soils and edible parts of various crops around a fluoride industrial park (FIP) in Changshu city, China, were measured. The concentration of ΣPFAS in the edible parts of all crops ranged from 11.64 to 299.5 ng/g, with perfluorobutanoic acid (PFBA) being the dominant compound, accounting for an average of 71% of ΣPFAS. The precursor substance, N-methylperfluoro-octanesulfonamidoacetic acid (N-MeFOSAA), was detected in all crop samples. Different types of crops showed distinguishing accumulation profiles for the PFAS. Solanaceae and leafy vegetables showed higher levels of PFAS contamination, with the highest ΣPFAS concentrations reaching 190.91 and 175.29 ng/g, respectively. The highest ΣAlternative was detected in leafy vegetables at 15.21 ng/g. The levels of human exposure to PFAS through crop consumption for various aged groups were also evaluated. The maximum exposure to PFOA for urban toddlers reached 109.8% of the standard value set by the European Food Safety Authority (EFSA). In addition, short-chained PFAAs and novel alternatives may pose potential risks to human health via crop consumption.

3.
Curr Microbiol ; 81(6): 155, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652318

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, catalase-positive, denitrifying bacterium, designated strain Y-1T, was isolated from an aeration tank of a sewage treatment plant in China and characterized using polyphasic taxonomic approaches. Strain Y-1T could grow at 10-37 °C (optimum 25 °C), at pH 5.0-10.0 (optimum 7.0) and in the presence of 0-3.0% (w/v) NaCl (optimum 0.5%). The phylogenetic tree based on the 16S rRNA gene sequences revealed that strain Y-1T was a member of genus Diaphorobacter, and showed the highest sequence similarities with Diaphorobacter oryzae RF3T (97.50%), Diaphorobacter nitroreducens NA10BT (97.38%) and Diaphorobacter aerolatus 8604S-37T (96.56%). In terms of carbon source utilization and enzyme activities, strain Y-1T was significantly different from its similar strains. The major respiratory quinone was Q-8, and the main polar lipid was phosphatidylethanolamine. Comparative genomic analysis of strain Y-1T and other Diaphorobacter species was conducted to explore the mechanisms underlying the differences among these strains. Strain Y-1T encoded 3957 genes, consisting of 3813 protein-coding genes and 144 RNA coding genes, and encoded 652 enzymes with 31 unique enzymes compared with other related species. The DNA G + C content was 69.95 mol%. Strain Y-1T exhibited 41.71% DNA-DNA relatedness and 95% ANIb with the most related type strains.On the basis of the evidence presented from polyphasic analysis, strain Y-1T was suggested as a novel species within the genus Diaphorobacter, for which the name Diaphorobacter limosus sp. nov. is proposed, with the type strain Y-1T (= KCTC 92852T = CCTCC AB 2023032T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Genoma Bacteriano , Ácidos Graxos/química , Comamonadaceae/genética , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
4.
J Hazard Mater ; 468: 133794, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368686

RESUMO

The tailings soil originating from an abandoned sulfur-iron mine in Sichuan Province, China, exhibits elevated concentrations of heavy metals (HMs) and possesses limited soil conservation capacity. Variability soil particle size fractions (PSFs) contributes to an increased risk of HMs ion migration. Existing research on HMs behavior has focused on the bulk soil scale, resulting in a dearth of comprehensive information concerning different particle sizes and colloid scales. We collected soil samples from upstream source (XWA), migration path (XWB), and downstream farmland (XWC) of an abandoned tailing and categorized into sand, silt, clay, colloid and dissolved, respectively. The investigation primarily aimed to elucidate the solid-liquid distribution trade-off strategies of soil HMs along migration pathway. Results show that PSFs composition predominantly influences HMs solid-liquid distribution. In the mining area, large particles serve as the principal component for HMs enrichment. However, along the migration pathway, the proportion of highly mobile fine particles increases, shifting HMs from solid to liquid phase. Furthermore, inorganic elements such as Mg, Al, and Fe influence on HMs distribution within PSFs through various reactions, whereas organic matter and glomalin-related soil protein (GRSP) also exert regulatory roles. Increasing the proportion of large particles can reduce the risk of HMs migration.

5.
J Colloid Interface Sci ; 656: 597-608, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040500

RESUMO

Carbon materials play a crucial role in promoting the Fe(III)/Fe(II) redox cycle in heterogeneous Fenton reactions. However, the electron transfer efficiency between carbon and iron is typically low. In this study, we prepared a novel heterogeneous Fenton catalyst, humboldtine/hydrothermal carbon (Hum/HTC), using a one-step hydrothermal method and achieved about 100 % reduction in Fe(III) during synthesis. Moreover, the HTC continuously provided electrons to promote Fe(II) regeneration during the Fenton reaction. Electron paramagnetic resonance (EPR) and quenching experiments showed that Hum/HTC completely oxidized As(III) to As(V) via free radical and non-free radical pathways. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses revealed that monodentate mononuclear (MM) and bidentate binuclear (BB) structures were the dominant bonding methods for As(V) immobilization. 40 %Hum/HTC exhibited a maximum As(III) adsorption capacity of 167 mg/g, which was higher than that of most reported adsorbents. This study provides a novel strategy for the efficient reduction of Fe(III) during catalyst synthesis and demonstrates that HTC can continuously accelerate Fe(II) regeneration in heterogeneous Fenton reactions.

6.
J Hazard Mater ; 465: 133378, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160554

RESUMO

Polybrominated diphenyl ethers (PBDEs) in soil and groundwater have garnered considerable attention owing to the significant bioaccumulation potential and toxicity. Currently, the coupling treatment method of nano zero-valent iron (nZVI) with dehalogenation microorganisms is a research hotspot in the field of PBDE degradation. In this study, various systems were established within anaerobic environments, including the nZVI-only system, microorganism-only system, and the nZVI + microorganisms system. The aim was to investigate the degradation pathway of BDE-209 and elucidate the degradation mechanism within the coupled system. The results indicated that the degradation efficiency of the coupled system was better than that of the nZVI-only or microorganism-only system. Two modified nZVI (carboxymethyl cellulose and polyacrylamide) were prepared to improve the coupling degradation efficiency. CMC-nZVI showed the highest stability, and the coupled system consisting of microorganisms and CMC-nZVI showed the best degradation effect among all of the systems in this study, reaching 89.53% within 30 days. Furthermore, 22 intermediate products were detected in the coupling systems. Notably, changing the inoculation time did not significantly improve the degradation effect. The expression changes of the two reductive dehalogenase genes, e.g. TceA and Vcr, reflected the stress response and self-recovery ability of the dehalogenating bacteria, indicating such genes can be used as biomarker for evaluating the degradation performance of the coupling system. These findings provide a better understanding about the mechanism of coupling debromination process and the direction for the optimization and on-site repair of coupled systems.


Assuntos
Éteres Difenil Halogenados , Ferro , Ferro/metabolismo , Éteres Difenil Halogenados/metabolismo , Bactérias/metabolismo
7.
Environ Sci Technol ; 57(26): 9702-9712, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37314230

RESUMO

Hexafluoropropylene oxide (HFPO) homologues, which are important alternatives to perfluorooctanoic acid, have been frequently identified in crops. Although exposure to HFPO homologues via crops may pose non-negligible threats to humans, their impact on crops is still unknown. In this study, the accumulation, transport, and distribution mechanisms of three HFPO homologues in lettuce were investigated at the plant, tissue, and cell levels. More specifically, HFPO trimer acid and HFPO tetramer acid were primarily fixed in roots and hardly transported to shoots (TF, 0.06-0.63). Conversely, HFPO dimer acid (HFPO-DA) tended to accumulate in lettuce shoots 2-264 times more than the other two homologues, thus resulting in higher estimated daily intake values. Furthermore, the dissolved organic matter derived from root exudate enhanced HFPO-DA uptake by increasing its desorption fractions in the rhizosphere. The transmembrane uptake of HFPO homologues was controlled by means of a transporter-mediated active process involving anion channels, with the uptake of HFPO-DA being additionally facilitated by aquaporins. The higher accumulation of HFPO-DA in shoots was attributed to the larger proportions of HFPO-DA in the soluble fraction (55-74%) and its higher abundance in both vascular tissues and xylem sap. Our findings expand the understanding of the fate of HFPO homologues in soil-crop systems and reveal the underlying mechanisms of the potential exposure risk to HFPO-DA.


Assuntos
Fluorocarbonos , Lactuca , Humanos , Fluorocarbonos/análise , Lactuca/química , Óxidos
8.
Toxics ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37235248

RESUMO

Chromium (Cr) is an expression toxic metal and is seriously released into the soil environment due to its extensive use and mining. Basalt is an important Cr reservoir in the terrestrial environment. Cr in paddy soil can be enriched by chemical weathering. Therefore, basalt-derived paddy soils contain extremely high concentrations of Cr and can enter the human body through the food chain. However, the water management conditions' effect on the transformation of Cr in basalt-derived paddy soil with high geological background values was less recognized. In this study, a pot experiment was conducted to investigate the effects of different water management treatments on the migration and transformation of Cr in a soil-rice system at different rice growth stages. Two water management treatments of continuous flooding (CF) and alternative wet and dry (AWD) and four different rice growth stages were set up. The results showed that AWD treatment significantly reduced the biomass of rice and promoted the absorption of Cr in rice plants. During the four growth periods, the root, stem and leaf of rice increased from 11.24-16.11 mg kg-1, 0.66-1.56 mg kg-1 and 0.48-2.29 mg kg-1 to 12.43-22.60 mg kg-1, 0.98-3.31 mg kg-1 and 0.58-2.86 mg kg-1, respectively. The Cr concentration in roots, stems and leaves of AWD treatment was 40%, 89% and 25% higher than CF treatment in the filling stage, respectively. The AWD treatment also facilitated the potential bioactive fractions conversion to the bioavailable fraction, compared with the CF treatment. In addition, the enrichment of iron-reducing bacteria and sulfate-reducing bacteria with AWD treatment also provided electron iron for the mobilization of Cr, thus affecting the migration and transformation of Cr in the soil. We speculated that the reason for this phenomenon may be the bioavailability of Cr was affected by the biogeochemical cycle of iron under the influence of alternating redox. This indicates that AWD treatment may bring certain environmental risks in contaminated paddy soil with high geological background, and it is necessary to be aware of this risk when using water-saving irrigation to plant rice.

9.
Sci Total Environ ; 891: 164232, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225094

RESUMO

Chromium (Cr) accumulating in soil caused serious pollution to cultivated land. At present, nano zero-valent iron (nZVI) is considered to be a promising remediation material for Cr-contaminated soil. However, the nZVI impact on the behavior of Cr in the soil-rice system under high natural geological background value remains unknown. We studied the effects of nZVI on the migration and transformation of Cr in paddy soil-rice by pot experiment. Three different doses of nZVI (0, 0.001 % and 0.1 % (w/w)) treatments and one dose of 0.1 % (w/w) nZVI treatment without plant rice were set up. Under continuous flooding conditions, nZVI significantly increased rice biomass compared with the control. At the same time, nZVI significantly promoted the reduction of Fe in the soil, increased the concentration of oxalate Fe and bioavailable Cr, then facilitated the absorption of Cr in rice roots and the transportation to the aboveground part. In addition, the enrichment of Fe(III)-reducing bacteria and sulfate-reducing bacteria in soil provided electron donors for Cr oxidation, which helps to form bioavailable Cr that is easily absorbed by plants. The results of this study can provide scientific basis and technical support for the remediation of Cr -polluted paddy soil with high geological background.


Assuntos
Cromo , Recuperação e Remediação Ambiental , Oryza , Poluentes do Solo , Cromo/análise , Ferro/química , Oryza/química , Gestão de Riscos , Solo , Poluentes do Solo/análise
10.
Environ Sci Technol ; 57(19): 7578-7589, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37116179

RESUMO

Remediation of per- and polyfluoroalkyl substances (PFAS) in groundwater remains a technological challenge due to the trace concentrations of PFAS and the strength of their C-F bonds. This study investigated an electroreductive system with a quaternary ammonium surfactant-modified cathode for degrading (E)-perfluoro(4-methylpent-2-enoic acid) (PFMeUPA) at a low cathodic potential. A removal efficiency of 99.81% and defluorination efficiency of 78.67% were achieved under -1.6 V (vs Ag/AgCl) at the cathode modified by octadecyltrimethylammonium bromide (OTAB). The overall degradation procedure started with the adsorption of PFMeUPA onto the modified cathode. This adsorption process was promoted by hydrophobic and electrostatic interactions between the surfactants and PFMeUPA, of which the binding percentage, binding mode, and binding energy were determined via molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The step-wise degradation pathway of PFMeUPA, including reductive defluorination and hydrogenation, was derived. Meanwhile, C-F bond breaking with direct electron transfer only was achieved for the first time in this study, which also showed that the C═C bond structure of PFAS facilitates the C-F cleavage. Overall, this study highlights the crucial role of quaternary ammonium surfactants in electron transfer and electrocatalytic activities in the electroreductive system and provides insights into novel remediation approaches on PFAS-contaminated groundwater.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Tensoativos/química , Adsorção , Eletrodos , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 327: 121608, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044257

RESUMO

Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.


Assuntos
Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Rizosfera , Ferro/metabolismo , Poaceae/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Dioxigenases/metabolismo , Compostos Orgânicos/metabolismo , Ácidos , Poluentes do Solo/metabolismo , Microbiologia do Solo
12.
J Hazard Mater ; 452: 131296, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027920

RESUMO

The application of neonicotinoid insecticides (NEOs) has increased dramatically in the world since being introduced in 1990s, yet the extent of human exposure and potential health risk is not fully unraveled. In this study, the residues were analyzed of 16 NEOs and their metabolites in 205 commercial cow milk samples circulating in Chinese market. All the milk samples contained at least one quantified NEO, and over 90% of samples contained a cocktail of NEOs. Acetamiprid, N-desmethyl acetamiprid, thiamethoxam, clothianidin and imidaclothiz were the most commonly detected analytes with detection frequencies of 50-88% and medians of 0.011-0.038 ng/mL in milk. Geographical origin was an important factor to influence abundances and levels of NEOs contamination in milk. Chinese local milk bore a significant higher risk from NEOs contamination than the imported milk. In China, the northwest presented the greatest concentrations of the insecticides relative to the north or south. Organic farming, ultra heat treatment and skimming could significantly reduce levels of NEOs contamination in milk. A relative potency factor method was used to evaluate estimated daily intake of NEO insecticides, and found the children had 3.5-5 times higher exposed risk via milk ingestion than the adults. The high frequency of NEOs detection in milk offers us a snapshot of the ubiquity of NEOs in milk, with possible health implications especially for children.


Assuntos
Inseticidas , Adulto , Criança , Feminino , Animais , Bovinos , Humanos , Inseticidas/toxicidade , Inseticidas/análise , Leite/química , Neonicotinoides , Tiametoxam , China , Nitrocompostos
13.
J Hazard Mater ; 453: 131390, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060752

RESUMO

The present study investigated the co-transport behavior of three REEs3+ (La3+, Gd3+, and Yb3+) with and without biochar nanoparticles (BC NPs) in water-saturated porous media. The presence of REEs3+ enhanced the retention of BC NPs in quartz sand (QS) due to decreased electrostatic repulsion between BC NPs and QS, enhanced aggregation of BC NPs, and the contribution of straining. The distribution coefficients (KD) in packed columns in the co-transport of BC NPs and three REEs3+ were much smaller than in batch experiments due to the different hydrodynamic conditions. In addition, we, for the first time, found that REE fractionation in the solid-liquid phase occurred during the co-transport of REEs3+ in the presence and absence of BC NPs. Note that the REE fractionation during the co-transport, which is helpful for the tracing application during earth surface processes, was driven by the interaction of REEs3+ with QS and BC NPs. This study elucidates novel insights into the fate of BC NPs and REEs3+ in porous media and indicates that (i) mutual effects between BC NPs and REE3+ should be considered when BC was applied to REE contaminated aquatic and soil systems; and (ii) REE fractionation provides a useful tool for identifying the sources of coexisting substances.

14.
Sci Total Environ ; 878: 162720, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36931519

RESUMO

Trichloroethylene (TCE) is one of the most prevalent contaminants with long-term persistence and a strong carcinogenic risk. Biological dechlorination has gradually become the mainstream method due to its advantages of low treatment cost and high environmental friendliness. However, microorganisms are easily restricted by environmental factors, such as an insufficient energy supply and a slow biological dechlorination process. This study focused on the coupled degradation of TCE with the combination of microorganisms and assistant materials (biochar, nZVI, nZVI modified biochar, HPO3 modified biochar), and set up microorganisms (alone) and materials (alone) as separate controls. Biochar provided nutrients, increased contact with pollutants, and promoted electron transfer to improve TCE degradation, although it did not change the pathway of degradation. The coupled treatment with anaerobic microorganisms (Micro) and 1 g/L unmodified biochar (BC) had the strongest degradation capacity. Compared with microorganisms alone, the addition of biochar resulted in the complete removal of TCE within 4 days. The influence of ambient temperature was mainly related to microbial activity, and 35 °C showed better degradation than 20 °C. Under 20 °C, 1 g/L of nZVI significantly promoted microbial dechlorination. As the dosage increased to 2 g/L and 4 g/L, nZVI showed a strong toxic effect. After 16 days, TCE was completely converted to ethylene by Micro-BC with C3H5O3Na, while 4.40 µmol dichloroethane (DCE) and 1.48 µmol vinyl chloride (VC) remained in the treatment with Micro-BC alone. As an electron acceptor, NaNO3 directly competed with TCE in the reduction process, which decreased the reduction efficiency of TCE. These findings provide a better understanding of the mechanism of the chemical materials coupling microbial dechlorination process and an optimal treatment method for trichloroethylene degradation.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Carbono , Tricloroetileno/química , Ferro/química , Biodegradação Ambiental , Poluentes Químicos da Água/química
15.
Sci Rep ; 12(1): 20638, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450880

RESUMO

Bone loss is common in sickle cell disease (SCD), but the molecular mechanisms is unclear. Serum insulin-like growth factor 1 (IGF1) was low in SCD subjects and SCD mice. To determine if decreased IGF1 associated with low bone mass in SCD is due to reduced SCFA production by gut microbiota, we performed reciprocal fecal microbiota transplantation (FMT) between healthy control (Ctrl) and SCD mice. uCT and histomorphometry analysis of femur showed decreased bone volume/total volume (BV/TV), trabecular number (Tb.N), osteoblast surface/bone surface (Ob.S/BS), mineralizing surface/ bone surface (MS/BS), inter-label thickness (Ir.L.Th) in SCD mice were significantly improved after receiving Ctrl feces. Bone formation genes Alp, Col1, Runx2, and Dmp1 from SCD mice were significantly decreased and were rescued after FMT from Ctrl feces. Transplantation of Ctrl feces increased the butyrate, valerate, and propionate levels in cecal content of SCD mice. Decreased G-coupled protein receptors 41 and 43 (GPR41 and GPR43) mRNA in tibia and lower IGF1 in bone and serum of SCD mice were partially restored after FMT from Ctrl feces. These data indicate that the healthy gut microbiota of Ctrl mice is protective for SCD bone loss through regulating IGF1 in response to impaired bacterial metabolites SCFAs.


Assuntos
Anemia Falciforme , Doenças Ósseas Metabólicas , Camundongos , Animais , Transplante de Microbiota Fecal , Fator de Crescimento Insulin-Like I , Anemia Falciforme/terapia , Fezes
16.
Nutrients ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215464

RESUMO

Boswellia serrata, commonly known as frankincense, has been used for centuries as a natural anti-inflammatory and anti-microbial remedy for many illnesses. However, the effect of the bioactive ingredient of it, 3-O-acetyl-11-keto-b-boswellic acid (AKBA), on both the gut microbiome and blood metabolites, is not known. In this study, we observe the effect of this isolated active ingredient orally on both male and female mice. Gut microbiota and blood metabolites were determined at the beginning and end of a 14-day consumption period. AKBA significantly decreased gut bacterial richness in male mice, and had no effect on female mice. Akkermansia muciniphila, associated with weight loss and anti-inflammation, was found to be significantly increased in both male and female mice, along with an increase in Bifidobacterium in female mice. Akkermansia muciniphila and Bifidobacterium were plated on media containing varying levels of AKBA (0%, 0.001%, 0.01%, and 0.1%). All concentrations of AKBA completely inhibited growth of Akkermansia muciniphila but had no effect on Bifidobacterium. Several blood metabolites differed with AKBA between both males and females. These results show the potential benefits of dietary Boswellia serrata on the modulation of gut microbiome composition, along with differences between sexes.


Assuntos
Boswellia , Microbioma Gastrointestinal , Triterpenos , Animais , Anti-Inflamatórios , Camundongos , Modelos Teóricos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia
17.
EBioMedicine ; 76: 103798, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35094961

RESUMO

BACKGROUND: Multiple sclerosis (MS) has a complex genetic, immune and metabolic pathophysiology. Recent studies implicated the gut microbiome in MS pathogenesis. However, interactions between the microbiome and host immune system, metabolism and diet have not been studied over time in this disorder. METHODS: We performed a six-month longitudinal multi-omics study of 49 participants (24 untreated relapse remitting MS patients and 25 age, sex, race matched healthy control individuals. Gut microbiome composition and function were characterized using 16S and metagenomic shotgun sequencing. Flow cytometry was used to characterize blood immune cell populations and cytokine profiles. Circulating metabolites were profiled by untargeted UPLC-MS. A four-day food diary was recorded to capture the habitual dietary pattern of study participants. FINDINGS: Together with changes in blood immune cells, metagenomic analysis identified a number of gut microbiota decreased in MS patients compared to healthy controls, and microbiota positively or negatively correlated with degree of disability in MS patients. MS patients demonstrated perturbations of their blood metabolome, such as linoleate metabolic pathway, fatty acid biosynthesis, chalcone, dihydrochalcone, 4-nitrocatechol and methionine. Global correlations between multi-omics demonstrated a disrupted immune-microbiome relationship and a positive blood metabolome-microbiome correlation in MS. Specific feature association analysis identified a potential correlation network linking meat servings with decreased gut microbe B. thetaiotaomicron, increased Th17 cell and greater abundance of meat-associated blood metabolites. The microbiome and metabolome profiles remained stable over six months in MS and control individuals. INTERPRETATION: Our study identified multi-system alterations in gut microbiota, immune and blood metabolome of MS patients at global and individual feature level. Multi-OMICS data integration deciphered a potential important biological network that links meat intakes with increased meat-associated blood metabolite, decreased polysaccharides digesting bacteria, and increased circulating proinflammatory marker. FUNDING: This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS10263304 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-180531003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG-190734474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Humanos , Metaboloma , Metagenômica , Esclerose Múltipla/etiologia , Espectrometria de Massas em Tandem
18.
EBioMedicine ; 71: 103557, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455391

RESUMO

BACKGROUND: The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in MS has not been studied. METHODS: In this case-control observational study, we performed ITS sequencing and characterised the gut mycobiome in people with MS (pwMS) and healthy controls at baseline and after six months. FINDINGS: The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Saccharomyces and Aspergillus were over-represented in pwMS. Saccharomyces was positively correlated with circulating basophils and negatively correlated with regulatory B cells, while Aspergillus was positively correlated with activated CD16+ dendritic cells in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial microbiome and immune cell subsets in the blood. Initial treatment with dimethyl fumarate, a common immunomodulatory therapy which also has fungicidal activity, did not cause uniform gut mycobiome changes across all pwMS. INTERPRETATION: There is an alteration of the gut mycobiome in pwMS, compared to healthy controls. Further study is required to assess any causal association of the mycobiome with MS and its direct or indirect interactions with bacteria and autoimmunity. FUNDING: This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS102633-04 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-1805-31003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG- 1907-34474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Assuntos
Disbiose , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Esclerose Múltipla/etiologia , Biomarcadores , Índice de Massa Corporal , Estudos de Casos e Controles , Biologia Computacional/métodos , Dieta , Suscetibilidade a Doenças , Disbiose/imunologia , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Humanos , Metagenoma , Metagenômica/métodos , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismo , Micobioma/imunologia
20.
Sci Rep ; 10(1): 14788, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901068

RESUMO

Despite widely used preventive measures such as sealant programs to control caries prevalence, disparities are seen among ethnic groups. Supragingival plaque harbors hundreds of bacterial species, playing a significant role in oral health and disease. It is unknown whether the ethnic variation influences the supragingival microbiota in children. In our study, variations in microbiota of the supragingival plaque was investigated from 96 children between 6 and 11 years old in four ethnic groups (African American, Burmese, Caucasian, and Hispanic) from the same geographic location by 16S rRNA gene sequencing. We found that the microbial alpha and beta diversity of supragingival microbiota significantly differed between ethnic groups. The supragingival plaque microbiota had the most complex microbial community in Burmese children. Within-group microbiota similarity in Burmese or Caucasian children was significantly higher than between-groups similarity. We identified seven ethnic group-specific bacterial taxa after adjusting for dental plaque index, decayed missing filled teeth (DMFT) and the frequency of brushing. Children with high plaque index and high DMFT values were more similar to each other in the overall microbial community, compared to low plaque index or low DMFT groups in which inter-subject variation is high. Several bacterial taxa associated with high plaque index or high DMFT were ethnic group-specific. These results demonstrated that supragingival microbiota differed among ethnicity groups in children.


Assuntos
Bactérias/classificação , Cárie Dentária/epidemiologia , Placa Dentária/epidemiologia , Etnicidade/estatística & dados numéricos , Microbiota/genética , Saúde Bucal/etnologia , Saliva/microbiologia , Bactérias/genética , Criança , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...