Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311491, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682729

RESUMO

Conductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T'-WTe2 electrodes with scanning tunneling microscope break junction (STM-BJ) technique. The quantized conductance of 1T'-WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.

2.
Small ; 20(8): e2305607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817357

RESUMO

The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.

3.
Nano Lett ; 23(13): 6027-6034, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387588

RESUMO

Electrodes play an essential role in controlling electrode-molecule coupling. However, conventional metal electrodes require linkers to anchor the molecule. Van der Waals interaction offers a versatile strategy to connect the electrode and molecule without anchor groups. Except for graphene, the potential of other materials as electrodes to fabricate van der Waals molecular junctions remains unexplored. Herein, we utilize semimetallic transition metal dichalcogenides (TMDCs) 1T'-WTe2 as electrodes to fabricate WTe2/metalated tetraphenylporphyrin (M-TPP)/WTe2 junctions via van der Waals interaction. Compared with chemically bonded Au/M-TPP/Au junctions, the conductance of these M-TPP van der Waals molecular junctions is enhanced by ∼736%. More importantly, WTe2/M-TPP/WTe2 junctions exhibit the tunable conductance from 10-3.29 to 10-4.44 G0 (1.15 orders of magnitude) via single-atom control, recording the widest tunable range of conductance for M-TPP molecular junctions. Our work demonstrates the potential of two-dimensional TMDCs for constructing highly tunable and conductive molecular devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...