Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hypertens ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820173

RESUMO

BACKGROUND: Renal proximal tubule plays a pivotal role in regulating sodium reabsorption and thus blood pressure. Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigates high salt intake induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. METHODS: Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group] or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for six months. Urinary sodium excretion, ROS production, mitochondrial function and the expression of NHE3 and Na+/K+-ATPase of renal proximal tubules were determined. RESULTS: Chronic dietary cinnamaldehyde supplementation reduced tail systolic blood pressure and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production and alleviated mitochondrial dysfunction of renal proximal tubules in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. CONCLUSION: The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.

2.
Heliyon ; 9(8): e18629, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37588604

RESUMO

Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive ROS production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.

3.
Plant Biotechnol J ; 21(2): 419-432, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382925

RESUMO

Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%-26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Fenótipo , Alelos
4.
J Am Chem Soc ; 144(44): 20267-20277, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305871

RESUMO

A new method to install a proton relay that enhances the reactivity near an active catalytic site for H2 production is reported, afforded by the electrochemical reduction and protonation of one of the ligands in the paddlewheel Rh2(II,II) hydrogen evolution complex, cis-[Rh2(DPhF)2(bncn)2]2+ (Rh-bncn; DPhF = N,N'-diphenylformamidinate, bncn = benzo[c]cinnoline). An electrochemical reversible prewave is observed for Rh-bncn at potentials more positive than the first bncn-centered reduction couple in the presence of strong acids, observed at -0.72 V vs Fc+/0 (Fc = ferrocene) in the cyclic voltammograms (CVs) in DMF (0.1 M TBAPF6). The origin of this prewave is shown to arise from a precatalytic transformation that originates from a concerted proton-electron transfer (CPET) event occurring at one of the bridging bncn ligands. Through electrochemical analysis, CV simulations, and electronic structure calculations, a reaction mechanism is elucidated. In this system, the electrochemically formed N-H bond on the reduced bncn ligand serves as a proton relay in the H2 formation reaction through a cooperative interligand pathway involving one of the bridging DPhF ligands after a second reduction step, accessible at approximately -1.15 V vs Fc+/0. Since calculations show that hydrogen evolution takes place at the bridging ligands and does not involve the dirhodium core, it is predicted that more abundant metal centers can be incorporated into this ligand scaffold, leading to new candidates for electrocatalytic hydrogen reduction. As such, this work delineates a new design strategy to incorporate proton relays in molecular bimetallic hydrogen evolution electrocatalysts to achieve higher efficiency.


Assuntos
Hidrogênio , Hidrogenase , Hidrogênio/química , Prótons , Hidrogenase/química , Ligantes , Catálise
5.
Mol Plant ; 14(6): 1012-1023, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930508

RESUMO

The genetic improvement of nitrogen use efficiency (NUE) of crops is vital for grain productivity and sustainable agriculture. However, the regulatory mechanism of NUE remains largely elusive. Here, we report that the rice Grain number, plant height, and heading date7 (Ghd7) gene genetically acts upstream of ABC1 REPRESSOR1 (ARE1), a negative regulator of NUE, to positively regulate nitrogen utilization. As a transcriptional repressor, Ghd7 directly binds to two Evening Element-like motifs in the promoter and intron 1 of ARE1, likely in a cooperative manner, to repress its expression. Ghd7 and ARE1 display diurnal expression patterns in an inverse oscillation manner, mirroring a regulatory scheme based on these two loci. Analysis of a panel of 2656 rice varieties suggests that the elite alleles of Ghd7 and ARE1 have undergone diversifying selection during breeding. Moreover, the allelic distribution of Ghd7 and ARE1 is associated with the soil nitrogen deposition rate in East Asia and South Asia. Remarkably, the combination of the Ghd7 and ARE1 elite alleles substantially improves NUE and yield performance under nitrogen-limiting conditions. Collectively, these results define a Ghd7-ARE1-based regulatory mechanism of nitrogen utilization, providing useful targets for genetic improvement of rice NUE.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Grão Comestível/química , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo
6.
Mol Plant ; 14(6): 997-1011, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741527

RESUMO

Grain number per panicle (GNP) is an important agronomic trait that contributes to rice grain yield. Despite its importance in rice breeding, the molecular mechanism underlying GNP regulation remains largely unknown. In this study, we identified a previously unrecognized regulatory gene that controls GNP in rice, Oryza sativa REPRODUCTIVE MERISTEM 20 (OsREM20), which encodes a B3 domain transcription factor. Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat (IR) sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties. Furthermore, we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence. Interestingly, the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions, and were independently inherited into the japonica and indica subspecies, respectively, during domestication. Importantly, we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding. Taken together, our study characterizes novel genetic variations responsible for GNP diversity in rice, reveals the underlying molecular mechanism in the regulation of agronomically important gene expression, and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.


Assuntos
Grão Comestível/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Alelos , Domesticação , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Sequências Repetidas Invertidas , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas
7.
Faraday Discuss ; 225: 371-383, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107542

RESUMO

Metal-organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. This increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 µs) in comparison to single-component control experiments (105 µs for RuB-UiO-67/TiO2/FTO and 7 µs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.

8.
Chemistry ; 27(17): 5379-5387, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33104237

RESUMO

Dinuclear rhodium complexes are attractive candidates as homogeneous panchromatic photosensitizers and photocatalysts. Modification of the coordination sphere of the Rh2 (II,II) compounds results in photophysical and redox properties that are highly desirable for electro- and photocatalysis. Specifically, Rh2 (II,II) complexes have shown promising catalytic activity towards proton reduction to generate H2 , a clean fuel, and for the selective reduction of CO2 to HCOOH. In addition, paddlewheel Rh2 (II,II) complexes provide robust platforms for the design of efficient and stable single-component photocatalysts. Optimization of the Rh2 (II,II) catalysts is crucial to realize their future application in devices or systems designed for the production of fuels from sunlight.

9.
Hypertens Res ; 43(7): 679-687, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32037396

RESUMO

Enhanced transient receptor potential canonical subtype 3 (TRPC3) expression and TRPC3-mediated calcium influx in monocytes from hypertensive rats and patients are associated with increased blood pressure. Daily salt intake is closely related to hypertension, but the relationship between TRPC3 expression and salt intake has not yet been evaluated in hypertensive patients. Using reverse transcription-polymerase chain reaction, we studied the expression of TRPC3 and TRPC3-related store-operated calcium entry (SOCE) in peripheral blood mononuclear cells (PBMCs) from hypertensive and normotensive control subjects. Measurement of SOCE was performed using the fluorescent dye Fura-2 AM. Participants were divided into a low-salt group (<9 g) and a high-salt group (≥9 g) based on 24-h urinary sodium excretion. Increased TRPC3 mRNA expression levels and SOCE were observed in THP-1 cells after high-NaCl treatment. However, administration of the TRPC3-specific inhibitor Pyr3 significantly decreased the effect. Furthermore, the TRPC3 mRNA expression levels in PBMCs from high-salt intake patients with essential hypertension were significantly higher than those in low-salt intake patients compared with those in normotensive control subjects. We also observed significantly increased TRPC3-mediated SOCE in PBMCs from hypertensive subjects (but not from normotensive control subjects), with calcium concentration correlating with salt intake. More importantly, TRPC3 mRNA levels showed a significant correlation with salt intake and systolic blood pressure in patients with essential hypertension. This study demonstrated, for the first time, that increased TRPC3 mRNA levels are associated with elevated salt intake and systolic blood pressure in hypertensive patients.


Assuntos
Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Canais de Cátion TRPC/metabolismo , Adulto , Idoso , Feminino , Humanos , Hipertensão/genética , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Canais de Cátion TRPC/genética
10.
Biochem Biophys Res Commun ; 519(4): 674-681, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31543348

RESUMO

Long-term high salt intake leads to cardiac hypertrophy, but the mechanism remains elusive. Transient receptor potential channel, canonical 3(TRPC3), located in mitochondria, regulates mitochondrial calcium and reactive oxygen species(ROS) production. Herein, we investigated whether TRPC3 participates in high salt-induced cardiac hypertrophy by impairing cardiac mitochondrial function. High salt treatment increased the expression of mitochondrial TRPC3 in cardiomyocytes, accompanied by enhanced mitochondrial calcium uptake and elevated ROS production. Inhibition of TRPC3 significantly reduced high salt-induced ROS generation, promoted ATP production by stimulating oxidative phosphorylation, and increased enzyme activity in mitochondria in cardiomyocytes. Additionally, TRPC3 deficiency inhibited high salt-induced cardiac hypertrophy in vivo. A long-term high salt diet increased cardiac mitochondrial TRPC3 expression, elevated expression of cardiac hypertrophic markers atrial natriuretic peptide (ANP),brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MHC) and decreased ATP production and mitochondrial complex I and II enzyme activity in a TRPC3-dependent manner. TRPC3 deficiency antagonises high salt diet-mediated cardiac hypertrophy by ameliorating TRPC3-mediated cardiac mitochondrial dysfunction. TRPC3 may therefore represent a novel target for preventing high salt-induced cardiac damage.


Assuntos
Cálcio/metabolismo , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPC/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/genética , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Peptídeo Natriurético Encefálico/metabolismo , Ratos , Cloreto de Sódio na Dieta/efeitos adversos , Canais de Cátion TRPC/genética
11.
BMC Plant Biol ; 19(1): 249, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185908

RESUMO

BACKGROUND: As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT: QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS: It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ligação Genética , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
12.
Front Plant Sci ; 10: 288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930921

RESUMO

As an elite rice variety cultivated in the third accumulative temperature belt in Heilongjiang province, China, Kongyu131 has many excellent traits, such as high quality, high stability, early maturation and cold resistance. However, as with other crop varieties, Kongyu131 has regional restrictions, exhibiting decreased yields when grown at low latitudes. To address these problems, two populations were constructed from cross between japonica and indica varieties. QTL analyses were performed with these two populations to detect regional adaptation related quantitative trait locus. Results in a BC1F6 backcross inbred line population with 168 lines derived from cross between Kongyu131 and GKMP showed a large pleiotropic QTL near 9 Mb on chromosome 7, which significantly delayed the HD of Kongyu131 and increased the plant height (PH), length of main panicle (LMP), number of primary branches (NPB) and grain number of main panicles (GNP). We also found a similar QTL in the population BC3F2 derived from Kongyu131 and GKLPL. Based on the QTL, we developed a gene module named mRA7 with 5 single-nucleotide polymorphism (SNP) markers around the QTL. Through a foreground and background selection based on 197 SNP markers evenly distributed over the 12 chromosomes, we obtained a new plant (a single point substitution line, SPSL) with a new Kongyu131 genome, carrying only a small chromosomal fragment less than 800 kb from GKLPL. The background recovery ratio of the SPSL was 99.8%. Compared with Kongyu131, the SPSL exhibited a significant HD delay of approximately 31 days and increased PH, LMP and GNP values when planted in Heilongjiang province. When cultivated in Guangdong province, HD of SPSL showed only 16 days delay, and less increase in PH, LMP and GNP than in Heilongjiang province. Phenotypic evaluation showed that the SPSL could be moved to south by more than 3 latitude units and cultivated in low-latitude regions. This study exemplifies the feasibility of expanding the regions of cultivation of elite rice varieties via similar methods.

13.
Dalton Trans ; 47(46): 16807-16812, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30431029

RESUMO

Solid-state electrochemiluminescence (ECL) has drawn increasing attention due to its advantages over solution-phase ECL, such as reducing the consumption of expensive reagents and enhancing the ECL signal. Herein we report a ruthenium(ii)-polypyridyl doped zirconium(iv) metal-organic framework (MOF) film, UiO-67-Ru@FTO, for solid-state electrochemiluminescence. With tripropylamine (TPA) as a coreactant, UiO-67-Ru@FTO exhibited high ECL intensity and good stability. A linear relationship was found between the ECL intensity and TPA concentration in a wide range of 0.04-20 mM. Additionally, UiO-67-Ru@FTO was successfully used for dopamine detection, implying its great potential in real-life applications.

14.
Chem Commun (Camb) ; 54(51): 6965-6974, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29809219

RESUMO

The dominant charge transfer mechanism in a vast number of metal-organic frameworks (MOFs) is that of redox hopping, a process best explained through the motion of electrons via self-exchange reactions between redox centers coupled to the motion of counter-balancing ions. Mechanistic studies of redox hopping transport in MOFs reveal characteristics that recall pioneering studies in linear redox polymers. When MOFs are employed as electrocatalysts, consideration must be given to both the catalytic properties - turn-over frequency (TOF) and energetic requirements (overpotential, TON) - and the charge transport properties - rate of charge hopping, measured via an apparent diffusion coefficient (Dapp). Herein, we provide a mathematical framework to provide constraints to MOF catalyst development by relating Dapp, TOF, and film thickness in the context of providing 10 mA cm-2 of catalytic current. Lastly with the mechanistic studies discussed as a foundation, design rules for future MOF electrocatalysts are provided and the challenges to the community to optimize MOF charge transport are laid out.

15.
Rice (N Y) ; 11(1): 21, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637380

RESUMO

BACKGROUND: Traditional crop breeding has made significant achievement meet food needs worldwide. However, the way has some inevitable problems including time-consuming, laborious, low predictability and reproducibility. In this study, we updated the GRAIN SIZE 3 (GS3) locus to improve the grain length of a major cultivate variety of Kongyu 131 at Heilongjiang Province, the northernmost region of China. High-resolution melting (HRM) analysis is used for single nucleotide polymorphism (SNP) genotyping. RESULTS: The improved line introgressed about 117 kb segment including gs3 allele from donor GKBR by using five SNP markers designed within and without GS3 locus, and the background recovery ratio of the recurrent parent genome is about 99.55% that are detected by 219 SNP markers evenly distributed on the 12 chromosomes. The field trial indicates that grain length, 100-grain weight and total grain weight per plant of the improved line raised by 12.05%, 16.30% and 4.47%, respectively, compared with Kongyu 131. CONCLUSIONS: This result demonstrates that update the GS3 locus is a feasible and efficient and accurate way can be applied to improve grain size of rice.

16.
ChemSusChem ; 11(2): 464-471, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29197150

RESUMO

Investigation of chemical water oxidation was conducted on [Ru(tpy)(dcbpy)(OH2 )]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine)-doped UiO-67 metal-organic framework (MOF). The MOF catalyst exhibited a single-site reaction pathway with kinetic behavior similar to that of a homogeneous Ru complex. The reaction was first order with respect to both the concentration of the Ru catalyst and ceric ammonium nitrate (CAN), with kcat =3(±2)×10-3 m-1 s-1 in HNO3 (pH 0.5). The common degradation pathways of ligand dissociation and dimerization were precluded by MOF incorporation, which led to sustained catalysis and greater reusability as opposed to the molecular catalyst in homogeneous solution. Lastly, at the same loading (ca. 97 nmol mg-1 ), samples of different particle sizes generated the same amount of oxygen (ca. 100 nmol), indicative of in-MOF reactivity. The results suggest that the rate of redox-hopping charge transport is sufficient to promote chemistry throughout the MOF particulates.


Assuntos
Estruturas Metalorgânicas/química , Compostos de Rutênio/química , Catálise , Técnicas Eletroquímicas/métodos , Elétrons , Microscopia Eletrônica de Varredura , Oxirredução , Tamanho da Partícula , Termogravimetria , Água/química
17.
J Am Chem Soc ; 140(3): 993-1003, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29268601

RESUMO

Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

18.
J Am Heart Assoc ; 6(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768647

RESUMO

BACKGROUND: Environmental cold-induced hypertension is common, but how to treat cold-induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold-sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca2+ homeostasis and the vascular function in cold-induced hypertension. METHODS AND RESULTS: Primary vascular smooth muscle cells from wild-type or Trpm8-/- mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum-resident TRPM8 participated in the regulation of cellular and mitochondrial Ca2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species-triggered Ca2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long-term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8-dependent manner. These effects of menthol were further validated in angiotensin II-induced hypertensive mice. CONCLUSIONS: Long-term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold-induced hypertension.


Assuntos
Temperatura Baixa/efeitos adversos , Hipertensão/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Canais de Cátion TRPM/fisiologia , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Cálcio/metabolismo , Respiração Celular/fisiologia , Células Cultivadas , Suplementos Nutricionais , Homeostase/efeitos dos fármacos , Masculino , Mentol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
19.
J Am Heart Assoc ; 6(7)2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711865

RESUMO

BACKGROUND: Mitochondrial Ca2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. METHODS AND RESULTS: In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H2O2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. CONCLUSIONS: Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca2+]mito, ROS production, and mitochondrial energy metabolism through targeting TRPC3.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Hipertensão/metabolismo , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Cátion TRPC/metabolismo , Trifosfato de Adenosina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Pressão Sanguínea , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Oxirredução , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPC/genética , Telmisartan , Fatores de Tempo , Regulação para Cima , Vasoconstrição
20.
Rice (N Y) ; 10(1): 35, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730413

RESUMO

BACKGROUND: Kongyu 131 is an elite japonica rice variety of Heilongjiang Province, China. It has the characteristics of early maturity, superior quality, high yield, cold tolerance and wide adaptability. However, there is potential to improve the yield of Kongyu 131 because of the relatively few grains per panicle compared with other varieties. Hence, we rebuilt the genome of Kongyu 131 by replacing the GRAIN NUMBER1a (Gn1a) locus with a high-yielding allele from a big panicle indica rice variety, GKBR. High-resolution melting (HRM) analysis was used for single nucleotide polymorphism (SNP) genotyping. RESULTS: Quantitative trait locus (QTL) analysis of the BC3F2 population showed that the introgressed segment carrying the Gn1a allele of GKBR significantly increased the branch number and grain number per panicle. Using 5 SNP markers designed against the sequence within and around Gn1a, the introgressed chromosome segment was shortened to approximately 430 Kb to minimize the linkage drag by screening recombinants in the target region. Genomic components of the new Kongyu 131 were detected using 220 SNP markers evenly distributed across 12 chromosomes, suggesting that the recovery ratio of the recurrent parent genome (RRPG) was 99.89%. Compared with Kongyu 131, the yield per plant of the new Kongyu 131 increased by 8.3% and 11.9% at Changchun and Jiamusi, respectively. CONCLUSIONS: To achieve the high yield potential of Kongyu 131, a minute chromosome fragment carrying the favorable Gn1a allele from the donor parent was introgressed into the genome of Kongyu 131, which resulted in a larger panicle and subsequent yield increase in the new Kongyu 131. These results indicate the feasibility of improving an undesirable trait of an elite variety by replacing only a small chromosome segment carrying a favorable allele.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA