Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36508948

RESUMO

The present study was conducted to investigate the regulatory mechanism of liver injury in largemouth bass Micropterus salmoides (LMB) fed low protein high starch diets. Two isolipidic and isoenergetic diets were formulated with different protein and starch ratios, being named as diets P49S9 (48.8 % protein and 9.06 % starch) and P42S18 (42.4 % protein and 18.2 % starch). Each diet was fed to triplicate replicates of LMB (initial body weight, 4.65 ± 0.01 g) juveniles. Fish were fed to visual satiation for 8 weeks. The results indicated that though the P42S18 fish up-regulated the feeding ratio to meet their protein requirements, feeding efficiency ratio and growth performance were impaired in treatment P42S18 as compared to treatment P49S9. Periodic acid-Schiff (PAS) staining showed glycogen accumulated in the liver of LMB fed low protein high starch diets, and the reason should be attributed to down-regulated expression of the glycogenolytic glycogen debranching enzyme. Lower liver lipid level was associated with feeding low protein high starch diets in LMB, which should be resulted from the changes in hepatic glycerolipid metabolism regulated by lipoprotein lipase (representative of triglyceride synthesis, up-regulated) and diacylglycerol acyltransferase (representative of triglyceride breakdown, down-regulated). Though fasting plasma glucose level was comparable, treatment P42S18 performed inferior glucose tolerance to treatment P49S9. Hematoxylin-eosin (HE) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining suggested that feeding low protein high starch diets induced disruption of structural integrity, inflammation and apoptosis in the hepatocytes of LMB. As expected, KEGG pathways analysis indicated that many of the up-regulated differentially expressed genes were enriched in AGE (advanced glycation end product)/RAGE (receptor for AGE), Toll-like receptor and apoptosis signaling pathways. Our transcriptome data revealed that feeding low protein high starch diets might promote the accumulation of AGEs in LMB, which bound to RAGE and subsequently induced PI3K/Akt signal pathway. The activation of Akt induced NF-κB translocation into the nucleus thus releasing proinflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin-8. The release of these inflammatory factors concomitantly induced T cell stimulation and natural killer cells chemotactic effects through Toll-like receptor signaling pathway. Besides mediating inflammation and immune response, TNF-α signal transduction participated in mediating apoptosis through the receptor of TNF (TNF-R1) pathway by up-regulating the expression of caspase 8 and cytochrome c. In conclusion, our results demonstrated that feeding low protein and high starch diets induced hepatocytes inflammation and apoptosis in LMB through the PI3K/Akt/NF-κB signaling pathway.


Assuntos
Bass , Amido , Animais , Amido/metabolismo , Amido/farmacologia , Bass/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dieta , Fígado/metabolismo , Triglicerídeos/metabolismo , Inflamação , Apoptose , Perfilação da Expressão Gênica
2.
Fish Shellfish Immunol ; 103: 135-142, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32423866

RESUMO

This study is aimed at identifying the effects of dietary fiber on gut health, as well as the association between that understanding and fiber consumption in fish. A total of 300 juvenile largemouth bass (micropterus salmoides, initial average weight: 15.38 ± 0.16g) were randomly divided into three treatment groups (4 replicates per group). Fish were fed with isoproteic and isolipidic diets containing 0% (low fiber, LF), 4% (moderate fiber, MF) and 8% (high fiber, HF) soybean fiber, respectively. The intestine and intestinal content of test fish per treatment group after 56 days of treatment were sampled. The results showed that the anterior intestinal sections had normal histological architecture, and no considerable damage or inflammation was observed in any histological section from all subjects examined. Curiously, fish fed the MF diet had better histological alterations than the other treatments. Meanwhile, the intestinal antioxidant capacity in the MF group was significantly promoted when compared to the other groups, as well as up-regulated expression of antioxidant-related genes including sod, cat and gpx with increasing dietary fiber concentrations. Importantly, the administrations of MF diet remarkably elevated largemouth bass innate immune parameters include intestinal inducible nitric oxide synthase (iNOS) activity, nitric oxide (NO) and total protein content. Similarly, dietary administrations of fiber down-regulated notablely the expression of pro-inflammatory cytokines including IL-8, IL-1ß and TNFα, whereas up-regulated tolerogenic cytokine IL-10 and TGF-ß1 mRNA levels. In addition, dietary fibers also modulated the community structure of the intestinal microbiota by significantly altering bacterial diversity. Dietary supplemental fibers regulated intestinal microbiota in largemouth bass, characterized by a reduced abundance of Fusobacteria along with increased abundances of Proteobacteria and Firmicutes. Taken together, the present results suggested that moderate fiber supplementation was beneficial to promoting intestinal health status of fish through antioxidant and anti-inflammatory effects, which could be at least partially responsible by the modulation of gut microbial composition.


Assuntos
Bass/imunologia , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Intestinos/anatomia & histologia , Intestinos/microbiologia , Distribuição Aleatória , Glycine max/química
3.
Fish Shellfish Immunol ; 97: 602-607, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31899355

RESUMO

The present study was conducted to investigate the effects of bile acids (BAs) on the growth, liver function and immunity of the largemouth bass fed high-starch diet. The experiment set three isonitrogenous and isoenergetic semi-purified diets, LS: low-starch diet (5%), HS: high-starch diet (19%) and SB: high-starch diet with BAs (350 mg/kg diet). An 8-week feeding trial was conducted in largemouth bass of initial weight 23.69 ± 0.13 g. The results indicated that the weight gain (WG) and protein efficiency ratio (PER) of fish fed LS and SB were significantly higher than HS treatment. The superoxide dismutase (SOD) and catalase (CAT) activities of SB group were significantly increased, while malondialdehyde (MDA) content significantly reduced in liver compared with HS group. The activities of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and glucose contents in plasma of SB group were significantly lower than HS treatment, whereas the content of triglyceride (TG) and total cholesterol (TC) in plasma were significantly higher than HS treatment. Additionally, the plasma immunoglobulin count, lysozyme activity and the blood leukocyte count (WBC) in SB group were significantly higher than HS group. The results of paraffin section of liver showed the histopathological alterations were significantly reduced in the SB group compared to HS group. All in all, this study revealed that bile acids supplement could significantly improve growth performance, enhance liver function and immune ability, and alleviate stress responses of M. salmoides fed high-starch diet.


Assuntos
Ração Animal/análise , Bass/imunologia , Ácidos e Sais Biliares/administração & dosagem , Suplementos Nutricionais/análise , Fígado/efeitos dos fármacos , Amido/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Bass/crescimento & desenvolvimento , Bass/fisiologia , Ácidos e Sais Biliares/imunologia , Fígado/imunologia
4.
Fish Physiol Biochem ; 46(1): 125-134, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31522360

RESUMO

The present study was conducted to investigate the effects of high dietary lipid levels on growth, metabolism, antioxidant capacity, and immune responses of largemouth bass. Fish (initial body weight 13.38 ± 0.11 g) were fed three isonitrogenous semi-purified diets containing 5%, 10%, and 20% lipid, respectively. The results indicated that fish fed 10% lipid diet showed significantly better final body weight, specific growth rate (SGR), protein efficiency ratio (PER), and feed conversion ratio (FCR) compared with that fed 5% lipid diet. Meanwhile, fish fed 20% lipid diet had a significantly higher viscera ratio (VR), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), and liver lipid content than those fed the other diets. Higher alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and LDL-C/HDL-C value in plasma were recorded in fish fed 20% lipid diet, while higher insulin contents were obtained in fish fed 5% lipid diet. In addition, the highest carnitine palmitoyltransferase I (CPT1), AMP-activated protein kinase (AMPK), fructose-1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver were also observed in fish fed 20% lipid diet. However, fish fed 20% lipid diet had a significantly lower superoxide dismutase (SOD) and catalase (CAT) activities and higher MDA contents in liver than those fed the other diets. The higher nitric oxide (NO) contents and inducible nitric oxide synthase (iNOS) activity in liver were recorded in fish fed 10% lipid diet. Moreover, the alkaline phosphatase (ALP), inducible nitric oxide synthase (iNOS) and lysozyme activities, and nitric oxide (NO) contents in plasma were higher in fish fed the 10% diets than the other groups. In conclusion, high dietary lipid levels could suppress growth performance and liver anti-oxidative capacity, and reduce immune responses of largemouth bass.


Assuntos
Bass/fisiologia , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP , Alanina Transaminase , Animais , Dieta , Gorduras na Dieta , Suplementos Nutricionais , Triglicerídeos/metabolismo
5.
Fish Physiol Biochem ; 45(5): 1513-1521, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30945042

RESUMO

A feeding trial was conducted to evaluate the effect of linseed oil (LO) on growth, plasma biochemistry, hepatic metabolism enzymes, and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides. Four isonitrogenous (crude protein, 45%) and isoenergetic (gross energy, 18 MJ/kg) diets were formulated by replacing 0 (the control), 33.3%, 66.7%, and 100% of fish oil with linseed oil. Each diet was fed to three replicate groups of fish (initial body weight, 22.02 ± 0.61 g) for 8 weeks. The results indicated that fish fed diet with 100% LO substitution level had lower weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) than the other groups (P < 0.05), while feed conversion ratio (FCR) was higher compared to the other groups (P < 0.05). Feed intake (FI) and hepatosomatic index (HSI) of 66.7% LO substitution level were significantly lower than the control groups (P < 0.05). Glycogen, lipid, and non-esterified fatty acid content in the liver decreased significantly with increasing dietary LO levels (P < 0.05). Moreover, the replacement of fish oil (FO) with LO could significantly reduce the content of triglyceride (TG) and total cholesterol (TC) and the activity of alanine amiotransferase (ALT) in plasma of M. salmoides (P < 0.05). There were significant differences in hepatic metabolism enzymes in fish fed diets with different dietary LO levels. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR-α) activities in liver significantly increased with increasing dietary LO level (P < 0.05). In addition, phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities in the liver significantly increased with decreasing dietary LO level (P < 0.05). Both the lowest superoxide dismutase (SOD) and catalase (CAT) activities in the liver were recorded in the control group (P < 0.05). Moreover, nitric oxide content, glutathione peroxidase (GPx), and inducible nitric oxide synthase (iNOS) activities in the liver significantly increased with increasing dietary LO level, while malondialdehyde (MDA) content significantly reduced. These findings demonstrated that LO can improve liver function and antioxidant ability of M. salmoides. In addition, replacing partial FO with LO cannot affect growth performance, but all substitutions inhibit growth performance of M. salmoides.


Assuntos
Antioxidantes/metabolismo , Bass/fisiologia , Óleo de Semente do Linho/farmacologia , Fígado/metabolismo , Tecido Adiposo/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Dieta/veterinária , Óleos de Peixe , Óleo de Semente do Linho/administração & dosagem , Óleo de Semente do Linho/química , Fígado/química , Fígado/efeitos dos fármacos
6.
Gen Comp Endocrinol ; 277: 82-89, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902611

RESUMO

In this experiment, Genetically improved farmed Nile tilapia Oreochromis niloticus were intraperitoneally injected with 1 g glucose/kg of body weight or saline. Red and white muscle tissues were collected at 0, 1, 2, 4, 6 and 12 h after the glucose tolerance test (GTT) or saline injection, and the time course of changes in molecular and metabolic adaption of glucose metabolism of these two tissues were evaluated. The results showed that the expression of insulin-responsive glucose transporter 4 (glut4) was up-regulated at 4 h after the GTT in the red muscle, implying an increase of glucose uptake. However, the expression of glut4 in the white muscle did not change with glucose load. The glycolysis of red muscle in tilapia was stimulated during 2-4 h after the GTT, as the expression of hexokinase 1b (hk1b), hk2, phosphofructokinase muscle type a (pfkma) and pfkmb and the activity of HK and PFK increased. By contrast, only the expression of hk1b was up-regulated at 6 h after the GTT in the white muscle. The mRNA level of glycogen synthase 1 (gys1) and glycogen content increased at 2 and 6 h, respectively after the GTT in the red muscle, suggesting that glucose storage was provoked. However, glycogen content in the white muscle was not impacted by GTT. Lipogenesis was stimulated in the red muscle as reflected by up-regulated expression of acetyl-CoA carboxylase α (accα) (during 2-4 h) and accß (during 4-12 h) with GTT. In the white muscle, however, the expression of accα was not changed, and mRNA level of accß was not up-regulated until 6 h after the GTT. Taken together, it was concluded that the glycolytic and glycogen synthesis mechanisms in the red muscle were highly regulated by an acute glucose load while those in the white muscle were less responsive to this stimulus.


Assuntos
Adaptação Fisiológica , Ciclídeos/metabolismo , Glucose/metabolismo , Músculos/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Animais Geneticamente Modificados , Ciclídeos/genética , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfofrutoquinases/metabolismo
7.
Fish Shellfish Immunol ; 78: 121-126, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684600

RESUMO

An experimental trial was conducted to investigate the effects of high dietary starch levels on growth, hepatic glucose metabolism enzyme, antioxidant capacity and immune responses of largemouth bass, Micropterus salmoides. Fish (initial body weight: 16.9 ±â€¯0.24 g) were fed three isonitrogenous and isoenergetic semi-purified diets containing 5%, 10% and 20% wheat starch, respectively. The results indicated that fish fed 5% and 10% starch diets showed significantly better weight gain, specific growth rate (SGR), protein efficiency ratio (PER) and feed conversion ratio (FCR) compared with that fed 20% starch diet. Meanwhile, fish fed 20% starch diet had a significantly higher hepatic glycogen and muscle glycogen contents than those fed the other diets. The alanine amiotransferase (ALT) and aspartate transaminase (AST) activities, glucose and insulin contents in plasma increased significantly with dietary starch levels, whereas triglyceride content showed the opposite trend. In addition, the highest glucokinase (GK), pyruvate kinase (PK) and phosphofructokinase (PFK) activities in liver were also observed in fish fed 20% starch diet. However, both fructose-1,6-bisphosphatase (FBPase) and pyruvate carboxylase (PC) activities in liver decreased significantly as dietary starch levels increased. Moreover, the lower superoxide dismutase (SOD) and catalase (CAT), the higher malondialdehyde (MDA) contents in liver were observed in fish fed 20% starch diets. Compared to the 5% and 10% starch, the 20% starch could enhance the content of plasma nitric oxide (NO) and the activities of inducible nitric oxide synthase (iNOS) and alkaline phosphatase (ALP). Results demonstrate that the starch levels may affect growth performance and metabolic changes, which suggest that high-starch diets were inefficiently used as an energy source by M. salmoides juveniles. Excessive dietary starch contents could result in oxidative stress, suppress innate immunity, and thus affect the health status of M. salmoides.


Assuntos
Bass/imunologia , Bass/fisiologia , Dieta/veterinária , Carboidratos da Dieta/metabolismo , Amido/metabolismo , Ração Animal/análise , Animais , Bass/crescimento & desenvolvimento , Carboidratos da Dieta/administração & dosagem , Relação Dose-Resposta a Droga , Glucose/metabolismo , Fígado/metabolismo , Distribuição Aleatória , Amido/administração & dosagem
8.
Fish Physiol Biochem ; 44(1): 401-410, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29147969

RESUMO

The study was conducted to evaluate the effect of dietary phospholipids (PLs) on growth, lipid metabolism, and antioxidative status of hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous and isolipidic diets with graded levels of PLs (8.5, 19.3, 30.7, 41.5, and 50.8 g kg-1) were fed to triplicate groups of juveniles (initial body weight 12.6 ± 0.23 g) for 8 weeks. Results showed that dietary PL supplementation significantly improved growth of juveniles. The final body weight (FBW) and specific growth rate (SGR) significantly increased with dietary PLs increasing from 8.5 to 41.5 g kg-1 (P < 0.05). Fish fed with the diet containing 8.5 g kg-1 PLs showed higher feed conversion ratio (FCR) compared to the other treatments (P < 0.05). Survival rate (SR) was not affected by dietary PL levels (P > 0.05). Liver lipid contents, serum triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) contents significantly decreased with the increasing levels of dietary PLs (P < 0.05). However, serum total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) contents and HDL-C/TC and HDL-C/LDL-C value significantly increased with increasing dietary PL levels (P < 0.05). The catalase (CAT), superoxide dismutase (SOD), and carnitine palmitoyl transferase I (CPT-1) activities in the liver significantly increased with incremental dietary PL level (P < 0.05), while the liver malondialdehyde (MDA) contents and fatty acid synthase (FAS) activity significantly reduced (P < 0.05). No significant difference was observed in the glutathione peroxidase (GPx) activity among dietary treatments (P > 0.05).These results confirmed that dietary PL supplementation has beneficial effects on growth performance and antioxidant capacity of juvenile hybrid snakehead. Dietary PLs might reduce lipid deposition in the liver of juvenile hybrid snakehead.


Assuntos
Antioxidantes/metabolismo , Peixes/metabolismo , Hibridização Genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfolipídeos/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Gorduras na Dieta , Suplementos Nutricionais , Peixes/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído
9.
Fish Shellfish Immunol ; 70: 40-47, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28863890

RESUMO

The effects of oral administration of Astragalus polysaccharides (APS) and chitooligosaccharides (COS), single or combined, on the growth performance, immunity and disease resistance of M. salmoides were investigated. Largemouth bass juvenile were divided into 4 groups and each group was fed with diets supplemented with or without immunostimulant for 8 weeks. After 8 weeks of feeding trial, five fish per tank were sampled for immunity determination, ten fish per tank were challenged by A. hydrophila. The results showed that the largemouth bass fed with two immunostimulants alone or in combination significantly enhanced the final weight and specific growth rate (SGR), decreased feed conversion ratio (FCR) (P < 0.05). However, there were no significant differences (P < 0.05) in specific growth rate (SGR) between dietary COS and dietary APS. In addition, both COS and APS upregulated respiratory burst activity (RBA), phagocytic activity (PA), lysozyme activity and superoxide dismutase (SOD) activity. Meanwhile, COS also exhibited a increase in total leukocyte count, nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity compared to the control. When challenged with A. hydrophila, the mortality of groups fed with COS and/or APS was lower than the control (P < 0.05). Under the experimental conditions, dietary APS and COS had a synergistic effect on lysozme activity, iNOS activity, NO content and disease resistance of fish (P < 0.05).


Assuntos
Adjuvantes Imunológicos/farmacologia , Bass/crescimento & desenvolvimento , Bass/imunologia , Quitina/análogos & derivados , Resistência à Doença , Imunidade Inata , Polissacarídeos/farmacologia , Ração Animal/análise , Animais , Astrágalo/química , Quitina/farmacologia , Quitosana , Dieta/veterinária , Suplementos Nutricionais/análise , Oligossacarídeos
10.
Biol Open ; 6(6): 818-824, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619994

RESUMO

The present study was performed to investigate the roles of anterior intestine in the postprandial glucose homeostasis of the omnivorous Genetically Improved Farmed Tilapia (GIFT). Sub-adult fish (about 173 g) were sampled at 0, 1, 3, 8 and 24 h post feeding (HPF) after 36 h of food deprivation, and the time course of changes in intestinal glucose transport, glycolysis, glycogenesis and gluconeogenesis at the transcription and enzyme activity level, as well as plasma glucose contents, were analyzed. Compared with 0 HPF (fasting for 36 h), the mRNA levels of both ATP-dependent sodium/glucose cotransporter 1 and facilitated glucose transporter 2 increased during 1-3 HPF, decreased at 8 HPF and then leveled off. These results indicated that intestinal uptake of glucose and its transport across the intestine to blood mainly occurred during 1-3 HPF, which subsequently resulted in the increase of plasma glucose level at the same time. Intestinal glycolysis was stimulated during 1-3 HPF, while glucose storage as glycogen was induced during 3-8 HPF. Unexpectedly, intestinal gluconeogenesis (IGNG) was also strongly induced during 1-3 HPF at the state of nutrient assimilation. The mRNA abundance and enzyme activities of glutamic-pyruvic and glutamic-oxaloacetic transaminases increased during 1-3 HPF, suggesting that the precursors of IGNG might originate from some amino acids. Taken together, it was concluded that the anterior intestine played an important role in the regulation of postprandial glucose homeostasis in omnivorous tilapia, as it represented significant glycolytic potential and glucose storage. It was interesting that postprandial IGNG was stimulated by feeding temporarily, and its biological significance remains to be elucidated in fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...