Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(24): 6412-6415, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099761

RESUMO

This work fabricates a nanowall electrode for achieving advanced liquid crystal (LC) devices and improving LC displays. The nanowall electrode consists of indium-tin-oxide (ITO) sheets stacked with nanowalls, and the nanowalls have a height and thickness of 4 µm and 500 nm, respectively. The high aspect ratio (8.0) of the nanowalls sets the nanowall electrode apart from previous electrodes. A flat electrode that comprises only ITO sheets is used to evaluate the nanowall electrode. The LC cell with the nanowall electrode exhibits better electro-optic properties than the LC cell with the flat electrode due to the strong transverse electric field and small subelectrode gap of the nanowall electrode. Especially, the operating voltage (3.7 V) of the nanowall cell is 36% smaller than that (5.8 V) of the flat cell. Therefore, nanowall electrodes have potential in LC lenses, LC antennas, metaverse displays, and digital optics.

2.
Materials (Basel) ; 16(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959587

RESUMO

Co60Fe20Sm20 thin films were deposited onto glass substrates in a high vacuum setting. The films varied in thickness from 10 to 50 nm and underwent annealing processes at different temperatures: room temperature (RT), 100, 200, and 300 °C. Our analysis encompassed structural, magnetic, electrical, nanomechanical, adhesive, and optical properties in relation to film thickness and annealing temperature. X-ray diffraction (XRD) analysis did not reveal characteristic peaks in Co60Fe20Sm20 thin films due to insufficient growth-driving forces. Electrical measurements indicated reduced resistivity and sheet resistance with increasing film thickness and higher annealing temperatures, owing to hindered current-carrier transport resulting from the amorphous structure. Atomic force microscope (AFM) analysis showed a decrease in surface roughness with increased thickness and annealing temperature. The low-frequency alternating current magnetic susceptibility (χac) values increased with film thickness and annealing temperature. Nanoindentation analysis demonstrated reduced film hardness and Young's modulus with thicker films. Contact angle measurements suggested a hydrophilic film. Surface energy increased with greater film thickness, particularly in annealed films, indicating a decrease in contact angle contributing to this increase. Transmittance measurements have revealed intensified absorption and reduced transmittance with thicker films. In summary, the surface roughness of CoFeSm films at different annealing temperatures significantly influenced their magnetic, electrical, adhesive, and optical properties. A smoother surface reduced the pinning effect on the domain walls, enhancing the χac value. Additionally, diminished surface roughness led to a lower contact angle and higher surface energy. Additionally, smoother surfaces exhibited higher carrier conductivity, resulting in reduced electrical resistance. The optical transparency decreased due to the smoother surface of Co60Fe20Sm20 films.

3.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687687

RESUMO

In this study, Co40Fe40B10Dy10 thin films were deposited using a direct current (DC) magnetron sputtering technique. The films were deposited on glass substrates with thicknesses of 10, 20, 30, 40, and 50 nm, and heat-treated in a vacuum annealing furnace at 100, 200, and 300 °C. Various instruments were used to examine and analyze the effects of roughness on the magnetic, adhesive, and mechanical properties. From the low frequency alternating current magnetic susceptibility (χac) results, the optimum resonance frequency is 50 Hz, and the maximum χac value tends to increase with the increase in the thicknesses and annealing temperatures. The maximum χac value is 0.18 at a film thickness of 50 nm and an annealing temperature of 300 °C. From the four-point probe, it is found that the resistivity and sheet resistance values decrease with the increase in film deposition thicknesses and higher annealing temperatures. From the magnetic force microscopy (MFM), the stripe-like magnetic domain distribution is more obvious with the increase in annealing temperature. According to the contact angle data, at the same annealing temperature, the contact angle decreases as the thickness increases due to changes in surface morphology. The maximal surface energy value at 300 °C is 34.71 mJ/mm2. The transmittance decreases with increasing film thickness, while the absorption intensity is inversely proportional to the transmittance, implying that the thickness effect suppresses the photon signal. Smoother roughness has less domain pinning, more carrier conductivity, and less light scattering, resulting in superior magnetic, electrical, adhesive, and optical performance.

4.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570084

RESUMO

CoFe-based alloys and rare earth (RE) elements are among the most studied materials in applying magnetic devices to improve soft magnetic characteristics. A series of Co40Fe40Sm20 films are deposited on a glass substrate via the sputtering technique, followed by an annealing process to investigate their effect on microstructural and optical properties of Co40Fe40Sm20 films. In this study, the increase in the thickness of Co40Fe40Sm20 films and annealing temperatures resulted in a smoother surface morphology. The 40 nm Co40Fe40Sm20 films annealed 300 °C are expected to have good wear resistance and adhesive properties due to their high values of H/E ratio and surface energy. Optical transparency also increased due to the smoother surface of the Co40Fe40Sm20 films.

5.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719898

RESUMO

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

6.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500008

RESUMO

The aim of this work is to investigate the effect of annealing and thickness on various physical properties in Co40Fe40Yb20 thin films. X-ray diffraction (XRD) was used to determine the amorphous structure of Co40Fe40Yb20 films. The maximum surface energy of 40 nm thin films at 300 °C is 34.54 mJ/mm2. The transmittance and resistivity decreased significantly as annealing temperatures and thickness increased. At all conditions, the 10 nm film had the highest hardness. The average hardness decreased as thickness increased, as predicted by the Hall-Petch effect. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered when the film was annealed at 200 °C with 50 nm, and the optimal resonance frequency (ƒres) was in the low frequency range, indicating that the film has good applicability in the low frequency range. At annealed 200 °C and 50 nm, the maximum saturation magnetization (Ms) was discovered. Thermal disturbance caused the Ms to decrease when the temperature was raised to 300 °C. The optimum process conditions determined in this study are 200 °C and 50 nm, with the highest Ms, χac, strong adhesion, and low resistivity, which are suitable for magnetic applications, based on magnetic properties and surface energy.

7.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500173

RESUMO

A typical body-centered cubic (BCC) CoFe(110) peak was discovered at approximately 2θ = 44.7°. At 2θ = 46°, 46.3°, 47.7°, 55.4°, 54.6°, and 56.4°, the Yb2O3 and Co2O3 oxide peaks were visible in all samples. However, with a heat treatment temperature of 300 °C, there was no typical peak of CoFe(110). Electrical characteristics demonstrated that resistivity and sheet resistance reduced dramatically as film thickness and annealing temperatures increased. At various heat treatments, the maximum hardness was 10 nm. The average hardness decreased as the thickness increased, and the hardness trend decreased slightly as the annealing temperature was higher. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered after being annealed at 200 °C with 50 nm, and the optimal resonance frequency (fres) was discovered to be within the low-frequency range, indicating that the Co40Fe40Yb20 film can be used in low-frequency applications. The maximum saturation magnetization (Ms) was annealed at 200 °C for 50 nm. Thermal disturbance caused the Ms to decrease as the temperature reached to 300 °C. The results show that when the oxidation influence of as-deposited and thinner films is stronger than annealing treatments and thicker thickness, the magnetic and electrical properties can be enhanced by the weakening peak of the oxide, which can also reduce interference.

8.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897615

RESUMO

X-ray diffraction (XRD) analysis showed that metal oxide peaks appear at 2θ = 47.7°, 54.5°, and 56.3°, corresponding to Yb2O3 (440), Co2O3 (422), and Co2O3 (511). It was found that oxide formation plays an important role in magnetic, electrical, and surface energy. For magnetic and electrical measurements, the highest alternating current magnetic susceptibility (χac) and the lowest resistivity (×10-2 Ω·cm) were 0.213 and 0.42, respectively, and at 50 nm, it annealed at 300 °C due to weak oxide formation. For mechanical measurement, the highest value of hardness was 15.93 GPa at 200 °C in a 50 nm thick film. When the thickness increased from 10 to 50 nm, the hardness and Young's modulus of the Co60Fe20Yb20 film also showed a saturation trend. After annealing at 300 °C, Co60Fe20Yb20 films of 40 nm thickness showed the highest surface energy. Higher surface energy indicated stronger adhesion, allowing for the formation of multilayer thin films. The optimal condition was found to be 50 nm with annealing at 300 °C due to high χac, strong adhesion, high nano-mechanical properties, and low resistivity.

9.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054701

RESUMO

A diffraction grating of polymer-dispersed liquid crystal (PDLC) with polarization-selective characteristics is investigated. Electrically controllable gratings are produced using In-Plane Switching (IPS) electrodes. Indium tin oxide (ITO) electrodes with a stripe pattern are used to generate a horizontal electric field parallel to the substrate on a single glass substrate. It is known from the experimental results that the number of diffraction orders can be controlled by applied voltage. Except for the zeroth order, the consistently highest intensity can be obtained for every other order of diffraction, and the polarization direction of the diffraction is perpendicular to the direction of the electrode stripes. The polarization direction of the zeroth order diffraction is parallel to the direction of the electrode stripes. Therefore, it can be used as a filter for light polarization.

10.
Opt Lett ; 46(23): 5962-5965, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851934

RESUMO

A simple method that is compatible with all geometrical structures of terahertz (THz) metamaterials for increasing their frequency tunabilities and decreasing their operating electric fields is proposed. This method uses the displacement of glycerol droplets with various volumes to tune the resonance frequency of a THz metamaterial in an electrowetting-on-dielectric (EWOD) cell. The experimental results reveal that the THz metamaterial has a large frequency tunability of 28% at an operating electric field that is smaller than 0.2 V/µm as the glycerol droplets move in and out of the path of a THz beam. The frequency tunability is large because the near field of the metamaterial "experiences" a large difference between the refractive indices of glycerol and air. The EWOD cell with the THz metamaterial is a great achievement for developing electrically controllable band-stop filters with large frequency tunabilities and small operating electric fields.

11.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683593

RESUMO

In this paper, a Co60Fe20Y20 film was sputtered onto Si (100) substrates with thicknesses ranging from 10 to 50 nm under four conditions to investigate the structure, magnetic properties, and surface energy. Under four conditions, the crystal structure of the CoFeY films was found to be amorphous by an X-ray diffraction analyzer (XRD), suggesting that yttrium (Y) added into CoFe films and can be refined in grain size and insufficient annealing temperatures do not induce enough thermal driving force to support grain growth. The saturation magnetization (MS) and low-frequency alternate-current magnetic susceptibility (χac) increased with the increase of the thicknesses and annealing temperatures, indicating the thickness effect and Y can be refined grain size and improved ferromagnetic spin exchange coupling. The highest Ms and χac values of the Co60Fe20Y20 films were 883 emu/cm3 and 0.26 when the annealed temperature was 300 °C and the thickness was 50 nm. The optimal resonance frequency (fres) was 50 Hz with the maximum χac value, indicating it could be used at a low frequency range. Moreover, the surface energy increased with the increase of the thickness and annealing temperature. The maximum surface energy of the annealed 300 °C film was 30.02 mJ/mm2 at 50 nm. Based on the magnetic and surface energy results, the optimal thickness was 50 nm annealed at 300 °C, which has the highest Ms, χac, and a strong adhesion, which can be as a free or pinned layer that could be combined with the magnetic tunneling layer and applied in magnetic fields.

12.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683609

RESUMO

This research explores the behavior of Co40Fe40W10B10 when it is sputtered onto Si(100) substrates with a thickness (tf) ranging from 10 nm to 100 nm, and then altered by an annealing process at temperatures of 200 °C, 250 °C, 300 °C, and 350 °C, respectively. The crystal structure and grain size of Co40Fe40W10B10 films with different thicknesses and annealing temperatures are observed and estimated by an X-ray diffractometer pattern (XRD) and full-width at half maximum (FWHM). The XRD of annealing Co40Fe40W10B10 films at 200 °C exhibited an amorphous status due to insufficient heating drive force. Moreover, the thicknesses and annealing temperatures of body-centered cubic (BCC) CoFe (110) peaks were detected when annealing at 250 °C with thicknesses ranging from 80 nm to 100 nm, annealing at 300 °C with thicknesses ranging from 50 nm to 100 nm, and annealing at 350 °C with thicknesses ranging from 10 nm to 100 nm. The FWHM of CoFe (110) decreased and the grain size increased when the thickness and annealing temperature increased. The CoFe (110) peak revealed magnetocrystalline anisotropy, which was related to strong low-frequency alternative-current magnetic susceptibility (χac) and induced an increasing trend in saturation magnetization (Ms) as the thickness and annealing temperature increased. The contact angles of all Co40Fe40W10B10 films were less than 90°, indicating the hydrophilic nature of Co40Fe40W10B10 films. Furthermore, the surface energy of Co40Fe40W10B10 presented an increased trend as the thickness and annealing temperature increased. According to the results, the optimal conditions are a thickness of 100 nm and an annealing temperature of 350 °C, owing to high χac, large Ms, and strong adhesion; this indicates that annealing Co40Fe40W10B10 at 350 °C and with a thickness of 100 nm exhibits good thermal stability and can become a free or pinned layer in a magnetic tunneling junction (MTJ) application.

13.
Polymers (Basel) ; 13(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502946

RESUMO

An organic solvent sensor of polymer-dispersed liquid crystals (PDLCs) film is fabricated by a combination of tri-functional monomers and LCs. When the patterned PDLC film comes into contact with the organic solvent, the organic solvent will penetrate into the film to induce the orientation of the liquid crystals, which will change from an ordered to a disordered state, which causes the PDLC film to scatter incident light. The experiment used acetone and ethanol as the organic solvents of interest. The results show that the patterned PDLC film has a stronger response to acetone than to ethanol. Based on the difference in the intensity of light scattering and the response time of the patterned PDLC film to different organic solvents, the results can be used to identify and recognize different types of organic solvents.

14.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443303

RESUMO

The microstructures and microwave dielectric properties of (Mg0.6Zn0.4)0.95Ni0.05TiO3 with Ca0.6La0.8/3TiO3 and Ca0.8Sm0.4/3TiO3 additions prepared by the solid-state method has been investigated. The crystallization and microstructures of these two mixed dielectrics were checked by XRD, EDX, BEI, and SEM to demonstrate two phase systems. Furthermore, the tunable dielectric properties can be achieved by adjusting the amounts of Ca0.6La0.8/3TiO3 and Ca0.8Sm0.4/3TiO3 additions, respectively. After optimization of processed parameters, a new dielectric material system 0.88(Mg0.6Zn0.4)0.95Ni0.05TiO3-0.12Ca0.6La0.8/3TiO3 possesses a permittivity (εr) of 24.7, a Qf value of 106,000 (GHz), and a τf value of 3.8 (ppm/°C), with sintering temperature at 1225 °C for 4 h. This dielectric system with a near-zero temperature coefficient and appropriate microwave properties revealed a high potential for high-quality substrates adopted in wireless communication devices.

15.
Polymers (Basel) ; 13(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803923

RESUMO

In this study, the performances of red CsPbI3-based all-inorganic perovskite quantum-dot light-emitting diodes (IPQLEDs) employing polymeric crystalline Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(9-vinycarbazole) (PVK), Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine (Poly-TPD) and 9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2,N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-fluorene-2,7-diamine (VB-FNPD) as the hole transporting layers (HTLs) have been demonstrated. The purpose of this work is an attempt to promote the development of device structures and hole transporting materials for the CsPbI3-based IPQLEDs via a comparative study of different HTLs. A full-coverage quantum dot (QD) film without the aggregation can be obtained by coating it with VB-FNPD, and thus, the best external quantum efficiency (EQE) of 7.28% was achieved in the VB-FNPD device. We also reported a standing method to further improve the degree of VB-FNPD polymerization, resulting in the improved device performance, with the EQE of 8.64%.

16.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348843

RESUMO

Mg0.95Ni0.05TiO3 ceramics were prepared by traditional solid-state route using sintering temperatures between 1300 and 1425 °C and holding time of 2-8 h. The sintered samples were characterized for their phase composition, micro-crystalline structure, unit-cell constant, and dielectric properties. A two-phase combination region was identified over the entire compositional range. The effect of sintering conditions was analyzed for various properties. Both permittivity (εr) and Q factor (Qf) were sensitive to sintering temperatures and holding times, and the optimum performance was found at 1350 °C withholding time of 4 h. The temperature coefficient of resonant frequency (τf) in a range from -45.2 to -52 (ppm/°C) and unit-cell constant were not sensitive to both the sintering temperature and holding time. An optimized Q factor of 192,000 (GHz) related with a permittivity (εr) of 17.35 and a temperature coefficient (τf) of -47 (ppm/°C) was realized for the specimen sintered at 1350 °C withholding time of 4 h. For applications of 5G communication device (filter, antennas, etc.), Mg0.95Ni0.05TiO3 is considered to be a suitable candidate for substrate materials.


Assuntos
Cerâmica/química , Magnésio/química , Teste de Materiais/métodos , Níquel/química , Telecomunicações/instrumentação , Titânio/química , Temperatura Alta , Micro-Ondas , Propriedades de Superfície
17.
BMC Plant Biol ; 19(1): 403, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519149

RESUMO

BACKGROUND: Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. Plants can sense when growing conditions are not favorable and trigger an internal response at an early stage before showing external symptoms. When a high amount of salt enters the plant cell, the membrane system and function of thylakoids in chloroplasts could be destroyed and affect photosynthetic performance if the salt concentration is not regulated to optimal values. Oryza species have salt-tolerant and salt-sensitive genotypes; however, very few studies have investigated the genetic architecture responsible for photosynthetic efficiency under salinity stress in cultivated rice. RESULTS: We used an imaging-based chlorophyll fluorometer to monitor eight rice varieties that showed different salt tolerance levels for four consecutive days under control and salt conditions. An analysis of the changes in chlorophyll fluorescence parameters clearly showed the maximum quantum efficiency of PSII in sensitive varieties was significantly reduced after NaCl treatment when compared to tolerant varieties. A panel of 232 diverse rice accessions was then analyzed for chlorophyll fluorescence under salt conditions, the results showed that chlorophyll fluorescence parameters such as F0 and NPQ were higher in Japonica subspecies, ΦPSII of Indica varieties was higher than that in other subgroups, which suggested that the variation in photosynthetic efficiency was extensively regulated under salt treatment in diverse cultivated rice. Two significant regions on chromosome 5 were identified to associate with the fraction of open PSII centers (qL) and the minimum chlorophyll fluorescence (F0). These regions harbored genes related to senescence, chloroplast biogenesis and response to salt stress are of interest for future functional characterization to determine their roles in regulating photosynthesis. CONCLUSIONS: Rice plant is very sensitive to salinity stress, especially at young seedling stage. Our work identified the distribution pattern of chlorophyll fluorescence parameters in seedlings leaf and their correlations with salt tolerance level in a diverse gene pool. We also revealed the complexity of the genetic architecture regulating rice seedling photosynthetic performance under salinity stress, the germplasm analyzed in this study and the associated genetic information could be utilized in rice breeding program.


Assuntos
Clorofila/metabolismo , Fluorescência , Plântula/metabolismo , Cromossomos de Plantas/genética , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Estudo de Associação Genômica Ampla , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fotossíntese/fisiologia , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia
18.
PLoS Negl Trop Dis ; 12(9): e0006773, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235208

RESUMO

A total of 1,596 laboratory-confirmed imported dengue cases were identified in Taiwan during 2011-2016. Most of the imported cases arrived from Southeast Asia as well as the Indian subcontinent, the Pacific region, Latin America, Australia and Africa. Phylogenetic analyses of the complete envelope protein gene sequences from 784 imported dengue virus (DENV) isolates were conducted, and the results suggest that the DENV-1 genotype I and DENV-2 Cosmopolitan genotype comprise the predominant serotype/genotype of DENV strains circulating in Southeast Asia. The DENV-1 genotype III, DENV-3 genotype III and DENV-4 genotype I and II strains were found to be newly emerging in several Southeast Asian countries. Our results also showed that geographical restrictions of DENV-1 genotype I, DENV-1 genotype III and DENV-2 Cosmopolitan genotype are becoming blurred, indicating the extensive introductions and continuous expansions of DENV strains between nations in Southeast Asia. In this study, we present the geographic distribution and dynamic transmission of DENV strains circulating in Southeast Asian countries. In addition, we demonstrated local dengue epidemics caused by several imported DENV strains in Taiwan during 2011-2016.


Assuntos
Doenças Transmissíveis Importadas/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Dengue/virologia , Filogenia , Sorogrupo , Doenças Transmissíveis Importadas/epidemiologia , Dengue/epidemiologia , Vírus da Dengue/isolamento & purificação , Genótipo , Humanos , Epidemiologia Molecular , Análise de Sequência de DNA , Taiwan/epidemiologia , Proteínas do Envelope Viral/genética
19.
Opt Express ; 24(25): 28739-28747, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958517

RESUMO

This study reports for the first time an all-optically controllable nanoparticle random laser (NPRL) in a well-aligned laser-dye-doped liquid crystal (LDDLC) cell added with NPs and azo-dyes. Experimental results display that the NPRL can be obtained when the pumped energy exceeds the energy threshold (~3.5 µJ/pulse). The occurrence of the NPRL is attributable to the enhancement of the fluorescence by the multi-scattering events of the fluorescence photons from the randomly distributed NPs in the diffusion rout of the well-aligned LDDLC cell. In addition, the lasing intensity of the NPRL can decrease with increasing irradiation time of one UV beam. Continuing irradiation of one green beam following the UV illumination can increasingly recover the lasing intensity of the NPRL. The all-optically reversible controllability of the NPRL is basically attributed to the successive UV-beam-induced increase and green-beam-induced decrease in the randomness of the LDDLC via their interactions with the curved cis and rod-like trans isomers after the accumulation of the trans→cis and cis→trans back isomerizations of the azo-dyes, respectively. The former and latter mechanisms can decrease and increase the laser-dye's absorption and thus the induced spontaneous emission, respectively. These consequences can decrease and increase the lasing intensity, or equivalently, increase and decrease the energy threshold for the occurrence of the NPRL, respectively.

20.
Opt Express ; 23(20): 26041-8, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480119

RESUMO

This study presents a theoretical analysis and experimental demonstration of an electrically controllable Fresnel lens in a 90° twisted nematic liquid crystal cell. The cell gap was chosen to satisfy the Gooch-Tarry conditions, and therefore, the polarization rotation effect was valid regardless of the incident polarization direction. The polarization sensitivity of the diffraction efficiency of the 90° twisted nematic Fresnel lens was dependent on the applied voltage regime. Theoretical calculations effectively explain the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...