Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis Rep ; 7(1): 51-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777330

RESUMO

Background: Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective: To evaluate the potential of Bugu-M on amyloid-ß (Aß) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods: We illustrated the effect of Bugu-M on Aß25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results: In primary cortical neuronal cultures, Bugu-M mitigated Aß-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion: Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.

2.
Oxid Med Cell Longev ; 2020: 7353618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047579

RESUMO

Cisplatin chemotherapy causes myelosuppression and often limits treatment duration and dose escalation in patients. Novel approaches to circumvent or lessen myelotoxicity may improve clinical outcome and quality of life in these patients. Chlorella sorokiniana (CS) is a freshwater unicellular green alga and exhibits encouraging efficacy in immunomodulation and anticancer in preclinical studies. However, the efficacy of CS on chemoprotection remains unclear. We report here, for the first time, that CS extract (CSE) could protect normal myeloid cells and PBMCs from cisplatin toxicity. Also, cisplatin-induced apoptosis in HL-60 cells was rescued through reservation of mitochondrial function, inhibition of cytochrome c release to cytosol, and suppression of caspase and PARP activation. Intriguingly, cotreatment of CSE attenuated cisplatin-evoked hypocellularity of bone marrow in mice. Furthermore, we observed the enhancement of CSF-GM activity in bone marrow and spleen in mice administered CSE and cisplatin, along with increased CD11b levels in spleen. In conclusion, we uncovered a novel mechanism of CSE on myeloprotection, whereby potentially supports the use of CSE as a chemoprotector against cisplatin-induced bone marrow toxicity. Further clinical investigation of CSE in combination with cisplatin is warranted.


Assuntos
Antineoplásicos/efeitos adversos , Células da Medula Óssea/efeitos dos fármacos , Cisplatino/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Mitocôndrias/metabolismo , Células Mieloides/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Células da Medula Óssea/patologia , Antígeno CD11b/metabolismo , Chlorella , Cisplatino/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HL-60 , Humanos , Imunomodulação , Terapia de Imunossupressão , Células Mieloides/patologia
3.
BMC Complement Altern Med ; 16: 277, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502492

RESUMO

BACKGROUND: To identify a novel therapeutic agent for hepatocellular carcinoma (HCC), for which no promising therapeutic agent exists, we screened a panel of plants and found that Juniperus chinensis exhibited potential antiangiogenic and anti-HCC activities. We further investigated the antiangiogenic and anti-HCC effects of the active ingredient of J. chinensis extract, CBT-143-S-F6F7, both in vitro and in vivo. METHODS: A tube formation assay conducted using human umbilical vein endothelial cells (HUVECs) was first performed to identify the active ingredient of CBT-143-S-F6F7. A series of angiogenesis studies, including HUVEC migration, Matrigel plug, and chorioallantoic membrane (CAM) assays, were then performed to confirm the effects of CBT-143-S-F6F7 on angiogenesis. The effects of CBT-143-S-F6F7 on tumor growth were investigated using a subcutaneous and orthotopic mouse model of HCC. In vitro studies were performed to investigate the effects of CBT-143-S-F6F7 on the cell cycle and apoptosis in HCC cells. Moreover, protein arrays for angiogenesis and apoptosis were used to discover biomarkers that may be influenced by CBT-143-S-F6F7. Finally, nuclear magnetic resonance analysis was conducted to identify the compounds of CBT-143-S-F6F7. RESULTS: CBT-143-S-F6F7 showed significantly antiangiogenic activity in various assays, including HUVEC tube formation and migration, CAM, and Matrigel plug assays. In in vivo studies, gavage with CBT-143-S-F6F7 significantly repressed subcutaneous Huh7 tumor growth in severe combined immunodeficient (SCID) mice, and prolonged the survival of orthotopic Huh7 tumor-bearing SCID mice (a 40 % increase in median survival duration compared with the vehicle-treated mice). Immunohistochemical staining of subcutaneous Huh7 tumors in CBT-143-S-F6F7-treated mice showed a significantly decrease in the cell cycle regulatory protein cyclin D1, cellular proliferation marker Ki-67, and endothelial marker CD31. CBT-143-S-F6F7 caused arrest of the G2/M phase and induced Huh7 cell apoptosis, possibly contributing to the inhibition of HCC tumors. Protein array analysis revealed that several angiogenic and antiapoptotic factors were suppressed in CBT-143-S-F6F7-treated Huh7 cells. Finally, five compounds from CBT-143-S-F6F7 were identified. CONCLUSIONS: According to these results, we report for the first time the antiangiogenic and anti-HCC activities of CBT-143-S-F6F7, the active fractional extract of J. chinensis. We believe that CBT-143-S-F6F7 warrants further evaluation as a new anti-HCC drug.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Juniperus/química , Neoplasias Hepáticas/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neovascularização Patológica/metabolismo
4.
J Cell Biochem ; 101(3): 735-44, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17226761

RESUMO

Albumin is not only a risk factor for diabetic nephropathy (DN), but also a therapeutic target. Hence, scientists have long sought ways to elucidate the interactions between albumin and diabetic renal tubule fibrosis. CD36, a surface receptor for thrombospondin-1, has been reported to interact with latent transforming growth factor-beta1 (TGF-beta1) and activate its fibrogenic bioactivity. This study elucidates the interactions between CD36 and renal tubule fibrosis. LLC-PK1 cells were applied to represent renal proximal tubule cells. The expression of CD36 was evaluated by flow cytometry. Fibronectin was assayed by Western blot and enzyme-linked immunosorbent assay (ELISA). Bioactive TGF-beta1 was assayed by ELISA. We demonstrated that albumin was shown significantly to inhibit cell growth without affecting hypertrophy status since protein content and cell size remained unaffected under albumin treatment. Moreover, albumin dose-dependently (0, 1, or 10 mg/ml) enhanced the secretion of bioactive TGF-beta1 and fibronectin with the upregulation of CD36. Intriguingly, CD36 siRNA, a potent silencer for CD36 effectively suppressed the albumin-induced increase in CD36, TGF-beta1, and even fibronectin level. Accordingly, albumin is a pro-fibrogenic factor for proximal tubule cells since albumin per se markedly upregulated the expression of TGF-beta1 and fibronectin. Most importantly, CD36 may mediate albumin-induced cellular fibrosis since CD36 siRNA appeared to have anti-fibrosis effects. This work suggests that CD36 is a novel and potential therapeutic target for diabetic renal tubule fibrosis.


Assuntos
Albuminas/toxicidade , Antígenos CD36/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Animais , Western Blotting , Antígenos CD36/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Fibronectinas/metabolismo , Fibrose , Hipertrofia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Modelos Biológicos , RNA Interferente Pequeno/genética , Suínos , Fator de Crescimento Transformador beta1/metabolismo
5.
J Cell Biochem ; 97(5): 956-68, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16267840

RESUMO

Albuminuria is indicative of nephropathy. However, little literature has focused on the role of albumin in renal distal tubule fibrosis. We used a well-defined distal tubule cell, Madin-Darby Canine Kidney (MDCK). Proliferation and cytotoxicity were examined. The conditioned supernatant was collected and subjected to ELISA assay for detection of fibronectin and TGF-beta1. Reverse transcription-PCR and Western blot assay were performed to evaluate the expression of mRNA and protein of two types of TGF-beta receptors (TbetaR). Flow cytometry assay and phosphotyrosine (pY)-specific antibodies were used to assay the phosphorylation status of TbetaR. We showed that albumin dose dependently (0, 0.1, 1, or 10 mg/ml) inhibited cellular growth in MDCK cells without inducing cellular cytotoxicity. In addition, albumin significantly upregulated the secretion of both fibronectin and TGF-beta1 at dose over 1 mg/ml. Moreover, 24 h pretreatment of albumin significantly enhanced exogenous TGF-beta1-induced secretion of fibronectin. These observations were reminiscent of the implications of TbetaR since TbetaR appears to correlate with the susceptibility of cellular fibrosis. We found that albumin significantly increased protein levels of type I TbetaR (TbetaRI) instead of type II receptors (TbetaRII). In addition, phosphorylation level of TbetaRII of both pY259 and pY424 was significantly enhanced instead of pY336. The novel observation indicates that extreme dose of albumin upregulates TGF-beta autocrine loop by upregulating TGF-beta1, TbetaRI, and the receptor kinase activity of TbetaRII by inducing tyrosine phosphorylation on key amino residue of TbetaRII in renal distal tubule cells. These combinational effects might contribute to the pathogenesis of renal fibrosis.


Assuntos
Albuminas/farmacologia , Fibrose/induzido quimicamente , Túbulos Renais Distais/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fibronectinas/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Ligantes , Fosforilação , Ligação Proteica , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...