Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320719

RESUMO

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Assuntos
Doença de Machado-Joseph , Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Interleucina-6 , Lipopolissacarídeos/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Biomolecules ; 13(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830589

RESUMO

Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt , Neuroblastoma/metabolismo , Proteínas tau/metabolismo , Receptor trkB/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2
3.
Biomol Ther (Seoul) ; 31(1): 127-138, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35790892

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3ß from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3ß activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3ß Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3ß kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

4.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361524

RESUMO

Hyperphosphorylation and aggregation of the microtubule binding protein tau is a neuropathological hallmark of Alzheimer's disease/tauopathies. Tau neurotoxicity provokes alterations in brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB)/cAMP-response-element binding protein (CREB) signaling to contribute to neurodegeneration. Compounds activating TRKB may therefore provide beneficial effects in tauopathies. LM-031, a coumarin derivative, has demonstrated the potential to improve BDNF signaling in neuronal cells expressing pro-aggregated ΔK280 tau mutant. In this study, we investigated if LM-031 analogous compounds provide neuroprotection effects through interaction with TRKB in SH-SY5Y cells expressing ΔK280 tauRD-DsRed folding reporter. All four LMDS compounds reduced tau aggregation and reactive oxygen species. Among them, LMDS-1 and -2 reduced caspase-1, caspase-6 and caspase-3 activities and promoted neurite outgrowth, and the effect was significantly reversed by knockdown of TRKB. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in these cells, implying that the neuroprotective effects of LMDS-1/2 are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. Furthermore, LMDS-1/2 demonstrated their ability to quench the intrinsic fluorescence of tryptophan residues within the extracellular domain of TRKB, thereby consolidating their interaction with TRKB. Our results suggest that LMDS-1/2 exert neuroprotection through activating TRKB signaling, and shed light on their potential application in therapeutics of Alzheimer's disease/tauopathies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Tauopatias , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas tau/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neuroproteção , Doença de Alzheimer/tratamento farmacológico , Cumarínicos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Neuroblastoma/metabolismo , Receptor trkB/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Caspases
5.
Aging (Albany NY) ; 14(18): 7568-7586, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36170028

RESUMO

Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer's disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aß toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aß-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aß-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood-brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aß cells, which may shed light on the potential application in therapeutics of AD.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana/agonistas , Neuroblastoma , Fármacos Neuroprotetores , Receptor trkB/agonistas , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cumarínicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Membranas Artificiais , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Wortmanina
6.
Oxid Med Cell Longev ; 2021: 3058861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812274

RESUMO

Abnormal accumulations of misfolded Aß and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aß-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aß-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aß and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Cumarínicos/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fármacos Neuroprotetores/química , Proteínas tau/genética
7.
Front Aging Neurosci ; 13: 758895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975454

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.

8.
Aging (Albany NY) ; 12(23): 23619-23646, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33196459

RESUMO

Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1ß, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1ß- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/farmacologia , Cumarínicos/farmacologia , Indóis/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Quinolinas/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Aging Cell ; 19(7): e13169, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32496635

RESUMO

Microtubule-associated protein Tau, abundant in the central nervous system (CNS), plays crucial roles in microtubule assembly and stabilization. Abnormal Tau phosphorylation and aggregation are a common pathogenic hallmark in Alzheimer's disease (AD). Hyperphosphorylation of Tau could change its conformation and result in self-aggregation, increased oxidative stress, and neuronal death. In this study, we examined the potential of licochalcone A (a natural chalcone) and five synthetic derivatives (LM compounds) for inhibiting Tau misfolding, scavenging reactive oxygen species (ROS) and providing neuroprotection in human cells expressing proaggregant ΔK280 TauRD -DsRed. All test compounds were soluble up to 100 µM in cell culture media and predicted to be orally bioavailable and CNS-active. Among them, licochalcone A and LM-031 markedly reduced Tau misfolding and associated ROS, promoted neurite outgrowth, and inhibited caspase 3 activity in ΔK280 TauRD -DsRed 293 and SH-SY5Y cells. Mechanistic studies showed that LM-031 upregulates HSPB1 chaperone, NRF2/NQO1/GCLC pathway, and CREB-dependent BDNF/AKT/ERK/BCL2 pathway in ΔK280 TauRD -DsRed SH-SY5Y cells. Decreased neurite outgrowth upon induction of ΔK280 TauRD -DsRed was rescued by LM-031, which was counteracted by knockdown of NRF2 or CREB. LM-031 further rescued the downregulated NRF2 and pCREB, reduced Aß and Tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3 × Tg-AD mice. Our findings strongly indicate the potential of LM-031 for modifying AD progression by targeting HSPB1 to reduce Tau misfolding and activating NRF2 and CREB pathways to suppress apoptosis and promote neuron survival, thereby offering a new drug development avenue for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Animais , Apoptose , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Estresse Oxidativo , Regulação para Cima
10.
Oxid Med Cell Longev ; 2020: 3129497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377295

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is caused by a CAG/CAA expansion mutation encoding an expanded polyglutamine (polyQ) tract in TATA-box binding protein (TBP), a general transcription initiation factor. Suppression of cAMP-responsive element binding protein- (CREB-) dependent transcription, impaired nuclear factor erythroid 2-related factor 2 (NRF2) signaling, and interaction of AMP-activated protein kinase (AMPK) with increased oxidative stress have been implicated to be involved in pathogenic mechanisms of polyQ-mediated diseases. In this study, we demonstrated decreased pCREB and NRF2 and activated AMPK contributing to neurotoxicity in SCA17 SH-SY5Y cells. We also showed that licochalcone A and the related in-house derivative compound 3-benzoyl-5-hydroxy-2H-chromen-2-one (LM-031) exhibited antiaggregation, antioxidative, antiapoptosis, and neuroprotective effects in TBP/Q79-GFP-expressing cell models. LM-031 and licochalcone A exerted neuroprotective effects by upregulating pCREB and its downstream genes, BCL2 and GADD45B, and enhancing NRF2. Furthermore, LM-031, but not licochalcone A, reduced activated AMPKα. Knockdown of CREB and NRF2 and treatment of AICAR (5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside), an AMPK activator, attenuated the aggregation-inhibiting and neurite outgrowth promoting effects of LM-031 on TBP/Q79 SH-SY5Y cells. The study results suggest the LM-031 as potential therapeutics for SCA17 and probable other polyQ diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cromonas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Chalconas/farmacologia , Humanos , Peptídeos/metabolismo , Ribonucleotídeos/farmacologia , Ataxias Espinocerebelares/patologia , Proteína de Ligação a TATA-Box/metabolismo
11.
Neurochem Int ; 125: 175-186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707915

RESUMO

The pathogenesis of Alzheimer's disease (AD) is involved in the aggregation of misfolded amyloid ß (Aß), which upregulates the activity of acetylcholinesterase (AChE), increases the production of reactive oxygen species (ROS), enhances neuroinflammation, and eventually leads to neuronal death. Therefore, compounds targeting these mechanisms may be candidates for multitarget drugs in AD treatment. We found that two quinoline derivatives, VB-030 and VB-037, markedly reduced Aß aggregation and ROS levels in the thioflavin T biochemical assay and Tet-On Aß-green fluorescent protein (GFP) 293 AD cell model. These compounds further improved neurite outgrowth, reduced AChE activity and upregulated the molecular chaperone heat shock protein family B [small] member 1 (HSP27), whereas knockdown of HSP27 counteracted the compounds' neuroprotective effects on the Tet-On Aß-GFP SH-SY5Y AD neuronal model. Furthermore, VB-037 attenuated lipopolysaccharide (LPS)/interferon (IFN)-γ-induced activation of BV-2 microglial cells. In addition, VB-037 demonstrated its potential to diminish LPS/IFN-γ-induced upregulation of caspase 1 activity, expression of interleukin (IL)-1ß, and active phosphorylation of mitogen-activated protein kinase 14 (P38), mitogen-activated protein kinase 8 (JNK), and Jun proto-oncogene, AP-1 transcription factor subunit (JUN) signalings, as well as improve cell viability in the Tet-On Aß-GFP SH-SY5Y AD neuronal model. Our findings strongly indicate the potential of VB-037 for modifying AD progression by targeting multiple mechanisms, thereby offering a new drug development avenue for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Crescimento Neuronal/fisiologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Linhagem Celular , Curcumina/farmacologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Crescimento Neuronal/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proto-Oncogene Mas , Quinolinas/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Aging (Albany NY) ; 11(3): 986-1007, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760647

RESUMO

Spinocerebellar ataxia (SCA) type 17 is an autosomal dominant ataxia caused by expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP). Substantial studies have shown involvement of compromised mitochondria biogenesis regulator peroxisome proliferator-activated receptor gamma-coactivator 1 alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor-Y subunit A (NFYA), and their downstream target genes in the pathogenesis of polyQ-expansion diseases. The extracts of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza uralensis (G. uralensis) have long been used as a Chinese herbal medicine (CHM). Shaoyao Gancao Tang (SG-Tang) is a formulated CHM made of P. lactiflora and G. uralensis at a 1:1 ratio. In the present study, we demonstrated the aggregate-inhibitory and anti-oxidative effect of SG-Tang in 293 TBP/Q79 cells. We then showed that SG-Tang reduced the aggregates and ameliorated the neurite outgrowth deficits in TBP/Q79 SH-SY5Y cells. SG-Tang upregulated expression levels of NFYA, PGC-1α, NRF2, and their downstream target genes in TBP/Q79 SH-SY5Y cells. Knock down of NFYA, PGC-1α, and NRF2 attenuated the neurite outgrowth promoting effect of SG-Tang on TBP/Q79 SH-SY5Y cells. Furthermore, SG-Tang inhibited aggregation and rescued motor-deficits in SCA17 mouse model. The study results suggest the potential of SG-Tang in treating SCA17 and probable other polyQ diseases.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Glycyrrhiza uralensis , Humanos , Camundongos Transgênicos , Terapia de Alvo Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paeonia , Peptídeos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fitoterapia , Ataxias Espinocerebelares/metabolismo , Proteína de Ligação a TATA-Box/efeitos dos fármacos , Proteína de Ligação a TATA-Box/metabolismo
13.
Am J Chin Med ; 47(1): 63-95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30612452

RESUMO

Nine autosomal dominant spinocerebellar ataxias (SCAs) are caused by an abnormal expansion of CAG trinucleotide repeats that encodes a polyglutamine (polyQ) tract within different genes. Accumulation of aggregated mutant proteins is a common feature of polyQ diseases, leading to progressive neuronal dysfunction and degeneration. SCA type 3 (SCA3), the most common form of SCA worldwide, is characterized by a CAG triplet expansion in chromosome 14q32.1 ATXN3 gene. As accumulation of the mutated polyQ protein is a possible initial event in the pathogenic cascade, clearance of aggregated protein by ubiquitin proteasome system (UPS) has been proposed to inhibit downstream detrimental events and suppress neuronal cell death. In this study, Chinese herbal medicine (CHM) extracts were studied for their proteasome-activating, polyQ aggregation-inhibitory and neuroprotective effects in GFPu and ATXN3/Q 75 -GFP 293/SH-SY5Y cells. Among the 14 tested extracts, 8 displayed increased proteasome activity, which was confirmed by 20S proteasome activity assay and analysis of ubiquitinated and fused GFP proteins in GFPu cells. All the eight extracts displayed good aggregation-inhibitory potential when tested in ATXN3/Q 75 -GFP 293 cells. Among them, neuroprotective effects of five selected extracts were shown by analyses of polyQ aggregation, neurite outgrowth, caspase 3 and proteasome activities, and ATXN3-GFP, ubiquitin, BCL2 and BAX protein levels in neuronal differentiated ATXN3/Q 75 -GFP SH-SY5Y cells. Finally, enhanced proteasome function, anti-oxidative activity and neuroprotection of catalpol, puerarin and daidzein (active constituents of Rehmannia glutinosa and Pueraria lobata) were demonstrated in GFPu and/or ATXN3/Q 75 -GFP 293/SH-SY5Y cells. This study may have therapeutic implication in polyQ-mediated disorders.


Assuntos
Antioxidantes , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Fármacos Neuroprotetores , Peptídeos/genética , Peptídeos/metabolismo , Fitoterapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ubiquitina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Terapia de Alvo Molecular , Mutação , Agregação Patológica de Proteínas/prevenção & controle , Pueraria/química , Rehmannia/química , Expansão das Repetições de Trinucleotídeos/genética
14.
Oxid Med Cell Longev ; 2018: 9595741, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510632

RESUMO

Misfolded tau proteins induce accumulation of free radicals and promote neuroinflammation by activating microglia-releasing proinflammatory cytokines, leading to neuronal cell death. Traditional Chinese herbal medicines (CHMs) have been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of formulated CHMs Bai-Shao (made of Paeonia lactiflora), Gan-Cao (made of Glycyrrhiza uralensis), and Shaoyao Gancao Tang (SG-Tang, made of P. lactiflora and G. uralensis at 1 : 1 ratio) in cell model of tauopathy. Our results showed that SG-Tang displayed a greater antioxidative and antiaggregation effect than Bai-Shao and Gan-Cao and a stronger anti-inflammatory activity than Bai-Shao but similar to Gan-Cao. In inducible 293/SH-SY5Y cells expressing proaggregant human tau repeat domain (ΔK280 tauRD), SG-Tang reduced tau misfolding and reactive oxygen species (ROS) level in ΔK280 tauRD 293 cells and promoted neurite outgrowth in ΔK280 tauRD SH-SY5Y cells. Furthermore, SG-Tang displayed anti-inflammatory effects by reducing nitric oxide (NO) production in mouse BV-2 microglia and increased cell viability of ΔK280 tauRD-expressing SH-SY5Y cells inflamed by BV-2 conditioned medium. To uncover the neuroprotective mechanisms of SG-Tang, apoptosis protein array analysis of inflamed tau expressing SH-SY5Y cells was conducted and the suppression of proapoptotic proteins was confirmed. In conclusion, SG-Tang displays neuroprotection by exerting antioxidative and anti-inflammatory activities to suppress neuronal apoptosis in human tau cell models. The study results lay the base for future applications of SG-Tang on tau animal models to validate its effect of reducing tau misfolding and potential disease modification.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Composição de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tauopatias/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/prevenção & controle , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Tauopatias/metabolismo , Tauopatias/patologia
15.
Am J Chin Med ; : 1-25, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284464

RESUMO

Amyloid [Formula: see text] (A[Formula: see text]) plays a major role in the pathogenesis of Alzheimer's disease (AD). The accumulation of misfolded A[Formula: see text] causes oxidative and inflammatory damage leading to apoptotic cell death. Chinese herbal medicine (CHM) has been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of CHM extract Glycyrrhiza inflata (G. inflata) and its active constituents, licochalcone A and liquiritigenin in AD. We examined A[Formula: see text] aggregation inhibition, anti-oxidation and neuroprotection in Tet-On A[Formula: see text]-GFP 293/SH-SY5Y cells and anti-inflammatory potential in lipopolysaccharide (LPS)-stimulated RAW 264.7 and LPS and interferon (IFN)-[Formula: see text] (LPS/IFN-[Formula: see text])-activated BV-2 cells. In addition, we applied conditioned media (CM) of BV-2 cells primed with LPS/IFN-[Formula: see text] to A[Formula: see text]-GFP SH-SY5Y cells to uncover the neuroprotective mechanisms. Our results showed that G. inflata extract and its two constituents displayed potentials of A[Formula: see text] aggregation inhibition and radical-scavenging in biochemical assays, A[Formula: see text] misfolding inhibition and reactive oxygen species (ROS) reduction in A[Formula: see text]-GFP 293 cells, as well as neurite outgrowth promotion, acetylcholinesterase inhibition and SOD2 up-regulation in A[Formula: see text]-GFP SH-SY5Y cells. Meanwhile, both G. inflata extract and its constituents suppressed NO, TNF-[Formula: see text], IL-1[Formula: see text], PGE2 and/or Iba1 productions in inflammation-stimulated RAW 264.7 or BV-2 cells. G. inflata extract and its constituents further protected A[Formula: see text]-GFP SH-SY5Y cells from BV-2 CM-induced cell death by ameliorating reduced BCL2 and attenuating increased IGFBP2, cleaved CASP3, BAD and BAX. Collectively, G. inflata extract, licochalcone A and liquiritigenin display neuroprotection through exerting anti-oxidative and anti-inflammatory activities to suppress neuronal apoptosis.

16.
Neurotoxicology ; 67: 259-269, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29936316

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is caused by the expansion of translated CAG repeat in the TATA box binding protein (TBP) gene encoding a long polyglutamine (polyQ) tract in the TBP protein, which leads to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On cells with inducible SCA17 TBP/Q79-GFP expression to test five in-house NC009 indole compounds for neuroprotection. We found that both aggregation and polyQ-induced reactive oxygen species can be significantly prohibited by the tested NC009 compounds in Tet-On TBP/Q79 293 cells. Among the five indole compounds, NC009-1 up-regulated expression of heat shock protein family B (small) member 1 (HSPB1) chaperone to reduce polyQ aggregation and promote neurite outgrowth in neuronal differentiated TBP/Q79 SH-SY5Y cells. The increased HSPB1 thus ameliorated the increased BH3 interacting domain death agonist (BID), cytochrome c (CYCS) release, and caspase 3 (CASP3) activation which result in apoptosis. Knock down of HSPB1 attenuated the effects of NC009-1 on TBP/Q79 SH-SY5Y cells, suggesting that HSPB1 might be one of the major pathways involved for NC009-1 effects. NC009-1 further reduced polyQ aggregation in Purkinje cells and ameliorated behavioral deficits in SCA17 TBP/Q109 transgenic mice. Our results suggest that NC009-1 has a neuroprotective effect on SCA17 cell and mouse models to support its therapeutic potential in SCA17 treatment.


Assuntos
Proteínas de Choque Térmico/metabolismo , Indóis/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Proteínas de Neoplasias/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Proteína de Ligação a TATA-Box/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico/agonistas , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Proteínas de Neoplasias/agonistas , Crescimento Neuronal/fisiologia , Proteína de Ligação a TATA-Box/genética
17.
Sci Rep ; 7(1): 179, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28282968

RESUMO

The Early Palæogene Silhouette/North Island volcano-plutonic complex was emplaced during the rifting of the Seychelles microcontinent from western India. The complex is thought to have been emplaced during magnetochron C28n. However, the magnetic polarities of the rocks are almost entirely reversed and inconsistent with a normal polarity. In this study we present new in situ zircon U/Pb geochronology of the different intrusive facies of the Silhouette/North Island complex in order to address the timing of emplacement and the apparent magnetic polarity dichotomy. The rocks from Silhouette yielded weighted mean 206Pb/238U ages from 62.4 ± 0.9 Ma to 63.1 ± 0.9 Ma whereas the rocks from North Island yielded slightly younger mean ages between 60.6 ± 0.7 Ma to 61.0 ± 0.8 Ma. The secular latitudinal variation from Silhouette to North Island is consistent with the anticlockwise rotation of the Seychelles microcontinent and the measured polarities. The rocks from Silhouette were emplaced across a polarity cycle (C26r-C27n-C27r) and the rocks from North Island were emplaced entirely within a magnetic reversal (C26r). Moreover, the rocks from North Island and those from the conjugate margin of India are contemporaneous and together mark the culmination of rift-related magmatism.

18.
CNS Neurosci Ther ; 23(1): 45-56, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27424519

RESUMO

BACKGROUND: Neurofibrillary tangles formed from tau misfolding have long been considered one of the pathological hallmarks of Alzheimer's disease (AD). The misfolding of tau in AD correlates with the clinical progression of AD and inhibition or reversal of tau misfolding may protect the affected neurons. METHODS: We generated 293 and SH-SY5Y cells expressing DsRed-tagged pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD ) to test indole/indolylquinoline derivatives for reducing tau misfolding and neuroprotection. RESULTS: Four of the 10 derivatives tested displayed good misfolding-inhibitory effects on Tet-On 293 cells. Among them, NC009-1 and NC009-7 enhanced heat-shock 27 kDa protein 1 (HSPB1) expression to increase ∆K280 tauRD -DsRed solubility and promoted neurite outgrowth in Tet-On SH-SY5Y cells. Knockdown of HSPB1 resulted in decreased ∆K280 tauRD -DsRed solubility and reduced neurite outgrowth, which were rescued by addition of NC009-1/NC009-7. Treatment with indole/indolylquinoline derivatives also improved neuronal cell viability and neurite outgrowth in mouse hippocampal primary culture under tau cytotoxicity. CONCLUSION: Our results demonstrate how indole/indolylquinoline derivatives are likely to work in tau misfolding reduction, providing insight into the possible working mechanism of indole and indolylquinoline derivatives in AD treatment.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Indóis/farmacologia , Proteínas tau/metabolismo , Androstadienos/farmacologia , Animais , Linhagem Celular Transformada , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Hipocampo/citologia , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Indóis/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dobramento de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Wortmanina , Proteínas tau/química , Proteínas tau/genética
19.
Phytomedicine ; 23(12): 1422-1433, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765362

RESUMO

BACKGROUND: The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. PURPOSE: We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP+-treated cells. METHODS: Promoter reporter assay in HEK-293 cells was used to examine the cis/trans elements controlling FBXO7 expression and to screen extracts of medicinal herbs enhancing FBXO7 expression. MTT assay was performed to assess cell viability of MPP+-treated HEK-293/SH-SY5Y cells. In addition, proteasome activity, mitochondrial membrane potential and FBXO7/TRAF2/GATA2 protein expression were evaluated. RESULTS: We demonstrated that -202--57 region of the FBXO7 promoter is likely to contain sequences that are bound by positive trans protein factors to activate FBXO7 expression and GATA2 is the main trans protein factor enhancing FBXO7 expression. Extracts of medicinal herbs Oenanthe javanica (Blume) DC. (Umbelliferae), Casuarina equisetifolia L. (Casuarinaceae), and Sorghum bicolor (L.) Moench (Gramineae) improved cell viability of both MPP+-treated HEK-293 and SH-SY5Y cells, rescued proteasome activity in MPP+-treated HEK-293 cells, and restored mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. These protection effects of herbal extracts are acting through enhancing FBXO7 and decreasing TRAF2 expression, which is probably mediated by GATA2 induction. CONCLUSION: Collectively, our study provides new targets, FBXO7 and its regulator GATA2, for the development of potential treatments of PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Proteínas F-Box/metabolismo , Fármacos Neuroprotetores/farmacologia , Oenanthe , Doença de Parkinson/metabolismo , Extratos Vegetais/farmacologia , Sorghum , Sobrevivência Celular/efeitos dos fármacos , Proteínas F-Box/genética , Fator de Transcrição GATA2/metabolismo , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Herbicidas/toxicidade , Humanos , Magnoliopsida , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo
20.
Drug Des Devel Ther ; 10: 885-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013866

RESUMO

BACKGROUND: Alzheimer's disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. MATERIALS AND METHODS: Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. RESULTS: Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. CONCLUSION: This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification.


Assuntos
Doença de Alzheimer/patologia , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza/química , Chaperonas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Células HEK293 , Humanos , Medicina Tradicional Chinesa , Modelos Biológicos , Neurônios/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Água/química , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...