Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 5325, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909045

RESUMO

Garnet oxide is one of the most promising solid electrolytes for solid-state lithium metal batteries. However, the traditional interface modification layers cannot completely block electron migrating from the current collector to the interior of the solid-state electrolyte, which promotes the penetration of lithium dendrites. In this work, a highly electron-blocking interlayer composed of potassium fluoride (KF) is deposited on garnet oxide Li6.4La3Zr1.4Ta0.6O12 (LLZTO). After reacting with melted lithium metal, KF in-situ transforms to KF/LiF interlayer, which can block the electron leakage and inhibit lithium dendrite growth. The Li symmetric cells using the interlayer show a long cycle life of ~3000 hours at 0.2 mA cm-2 and over 350 hours at 0.5 mA cm-2 respectively. Moreover, an ionic liquid of LiTFSI in C4mim-TFSI is screened to wet the LLZTO|LiNi0.8Co0.1Mn0.1O2 (NCM) positive electrode interfaces. The Li|KF-LLZTO | NCM cells present a specific capacity of 109.3 mAh g-1, long lifespan of 3500 cycles and capacity retention of 72.5% at 25 °C and 2 C (380 mA g-1) with an average coulombic efficiency of 99.99%. This work provides a simple and integrated strategy on high-performance quasi-solid-state lithium metal batteries.

2.
Adv Mater ; 36(6): e2309637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985136

RESUMO

Molybdenum disulfide (MoS2 ) with high theoretical capacity is viewed as a promising anode for sodium-ion batteries but suffers from inferior rate capability owing to the polaron-induced slow charge transfer. Herein, a polaron collapse strategy induced by electron-rich insertions is proposed to effectively solve the above issue. Specifically, 1D [MoS] chains are inserted into MoS2 to break the symmetry states of 2D layers and induce small-polaron collapse to gain fast charge transfer so that the as-obtained thermodynamically stable Mo2 S3 shows metallic behavior with 107 times larger electrical conductivity than that of MoS2 . Theoretical calculations demonstrate that Mo2 S3 owns highly delocalized anions, which substantially reduce the interactions of Na-S to efficiently accelerate Na+ diffusion, endowing Mo2 S3 lower energy barrier (0.38 vs 0.65 eV of MoS2 ). The novel Mo2 S3 anode exhibits a high capacity of 510 mAh g-1 at 0.5 C and a superior high-rate stability of 217 mAh g-1 at 40 C over 15 000 cycles. Further in situ and ex situ characterizations reveal the in-depth reversible redox chemistry in Mo2 S3 . The proposed polaron collapse strategy for intrinsically facilitating charge transfer can be conducive to electrode design for fast-charging batteries.

3.
Small ; 19(26): e2207934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942685

RESUMO

Second harmonic generation (SHG) of 2D crystals has been of great interest due to its advantages of phase-matching and easy integration into nanophotonic devices. However, the polarization-dependence character of the SHG signal makes it highly troublesome but necessary to match the laser polarization orientation relative to the crystal, thus achieving the maximum polarized SHG intensity. Here, it is demonstrated a polarization-independent SHG, for the first time, in the van der Waals Nb3 SeI7 crystals with a breathing Kagome lattice. The Nb3 triangular clusters and Janus-structure of each Nb3 SeI7 layer are confirmed by the STEM. Nb3 SeI7 flake shows a strong SHG response due to its noncentrosymmetric crystal structure. More interestingly, the SHG signals of Nb3 SeI7 are independent of the polarization of the excitation light owing to the in-plane isotropic arrangement of nonlinear active units. This work provides the first layered nonlinear optical crystal with the polarization-independent SHG effect, providing new possibilities for nonlinear optics.

4.
Nat Commun ; 13(1): 4650, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945215

RESUMO

Solids can be generally categorized by their structures into crystalline and amorphous states with different interactions among atoms dictating their properties. Crystalline-amorphous hybrid structures, combining the advantages of both ordered and disordered components, present a promising opportunity to design materials with emergent collective properties. Hybridization of crystalline and amorphous structures at the sublattice level with long-range periodicity has been rarely observed. Here, we report a nested order-disorder framework (NOF) constructed by a crystalline matrix with self-filled amorphous-like innards that is obtained by using pressure to regulate the bonding hierarchy of Cu12Sb4S13. Combined in situ experimental and computational methods demonstrate the formation of disordered Cu sublattice which is embedded in the retained crystalline Cu framework. Such a NOF structure gives a low thermal conductivity (~0.24 W·m-1·K-1) and a metallic electrical conductivity (8 × 10-6 Ω·m), realizing the collaborative improvement of two competing physical properties. These findings demonstrate a category of solid-state materials to link the crystalline and amorphous forms in the sublattice-scale, which will exhibit extraordinary properties.

5.
Macromol Rapid Commun ; 43(15): e2200040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35258142

RESUMO

Aqueous asymmetric supercapacitor has captured widespread attention as a sustainable high-power energy resource. Organic electrode materials are appealing owing to their sustainability and high redox reactivity, but suffer from structural instability and low power density. Here the π-conjugated polyimide-based organic electrodes with different lengths of alkyl chains are explored to achieve high rate capability and long lifespan in an aqueous K+ -ion electrolyte. The fabricated asymmetric supercapacitor exhibits high capacities of 107 mAh g-1 at 2 A g-1 and 67 mAh g-1 at 90 A g-1 . A specific capacity of 65 mAh g-1 over 70% of the initial performance is obtained after 65 000 cycles. Molecular engineering of long alkyl chains in polyimide can reduce the degree of π-conjugation and spatially block the π-conjugated imide bond with limited redox activity but improved stability against chemical degradation. Further electrochemical quartz crystal microbalance, ex-situ Fourier transformed infrared spectroscopy, and X-ray photoelectron spectroscopy characterizations reveal the pseudocapacitance behavior originating from the π-conjugated polyimide-based redox reaction with potassium ions and hydrated potassium ions. A promising polyimide-based polymer with extended π-conjugated system for high-performance asymmetric supercapacitor is showcased.

6.
Research (Wash D C) ; 2020: 4178179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103117

RESUMO

Aqueous supercapacitors are powerful energy sources, but they are limited by energy density that is much lower than lithium-ion batteries. Since raising the voltage beyond the thermodynamic potential for water splitting (1.23 V) can boost the energy density, there has been much effort on water-stabilizing salvation additives such as Li2SO4 that can provide an aqueous electrolyte capable of withstanding ~1.8 V. Guided by the first-principles calculations that reveal water can promote hydrogen and oxygen evolution reactions, here, we pursue a new strategy of covering the electrode with a dense electroplated polymerized polyacrylic acid, which is an electron insulator but a proton conductor and proton reservoir. The combined effect of salvation and coating expands the electrochemical window throughout pH 3 to pH 10 to 2.4 V for both fast and slow proton-mediated redox reactions. This allows activated carbon to quadruple the energy density, a kilogram of nitrogen-doped graphene to provide 127 Watt-hour, and both to have improved endurance because of suppression of water-mediated corrosion. Therefore, aqueous supercapacitors can now achieve energy densities quite comparable to that of a lithium-ion battery, but at 100 times the charging/discharging speed and cycle durability.

7.
ACS Appl Mater Interfaces ; 12(25): 28075-28082, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32450684

RESUMO

Nitrogen-rich carbon materials attract great attention because of their admirable performance in energy storage and electrocatalysis. However, their conductivity and nitrogen content are somehow contradictory because good conductivity requires high-temperature heat treatment, which decomposes most of the nitrogen species. Herein, we propose a facile method to solve this problem by introducing boron (B) to fix the nitrogen in a three-dimensional (3D) carbon material even at 1000 °C. Besides, this N-rich carbon material has a high content of pyrrolic nitrogen due to the selective stabilization of B, which is favorable in electrochemical reactions. Density functional theory (DFT) investigation demonstrates that B reduces the energy level of neighboring N species (especially pyrrolic nitrogen) in the graphene layer, making it difficult to escape. Thus, this carbon material simultaneously, achieves high conductivity (30 S cm-1) and nitrogen content (7.80 atom %), thus showing an outstanding capacitance of 412 F g-1 and excellent rate capability.

8.
ACS Appl Mater Interfaces ; 11(6): 5999-6008, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30648842

RESUMO

A facile approach of in situ electrochemical oxidation has been utilized to modify carbons, including activated carbon, mesoporous few-layer carbon, graphite, carbon fiber, and carbon nanotube, which induces oxygen-containing functional groups on its surface and simultaneously enhances its wettability, contributing to the improvement of capacitance. By this approach, the capacitance of commercialized activated carbon is increased by 86% in an acidic electrolyte, reaching 320 F g-1, of which more than 96% was maintained after 10 000 cyclic tests. The huge improvement stems from electrochemical redox reactions enabled by oxygen-associated groups, which do not adversely affect the porous structure and electrical conductivity. Such improvement will put carbon-based electrochemical capacitors into more practical application areas.

9.
ACS Omega ; 3(11): 15009-15017, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458167

RESUMO

Hydrogen production by water splitting and the removal of aqueous dyes by using a catalyst and solar energy are an ideal future energy source and useful for environmental protection. Graphitic carbon nitride can be used as the photocatalyst with visible light irradiation. However, it typically suffers from the high recombination of carriers and low electrical conductivity. Here, we have developed a facile mix-thermal strategy to prepare carbon black-modified graphitic carbon nitrides, which possess high electrical conductivity, a wide adsorption range of visible light, and a low recombination rate of carriers. With the help of carbon black, highly crystallized graphitic carbon nitrides with built-in triazine and heptazine heterojunctions are obtained. Improved photocatalytic activities have been achieved in carbon black-modified graphitic carbon nitride. The dye removal rate can be three times faster than that of pristine graphitic carbon nitride and the photocatalytic H2 generation is 234 µmol h-1 g-1 under visible light irradiation.

10.
Angew Chem Int Ed Engl ; 57(5): 1232-1235, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29210496

RESUMO

2H MoS2 has been intensively studied because of its layer-dependent electronic structures and novel physical properties. Though the metastable 1T MoS2 with a [MoS6 ] octahedron was observed over the microscopic area, the true crystal structure of 1T phase has not been strictly determined. Moreover, the true physical properties have not been demonstrated from experiments owing to the challenge for the preparation of pure 1T MoS2 crystals. 1T MoS2 single crystals were successfully synthesized and the crystal structure of 1T MoS2 re-determined from single-crystal X-ray diffraction. 1T MoS2 crystallizes in the space group P3‾ m1 with a cell of a=b=3.190(3) Šand c=5.945(6) Å. The individual MoS2 layer consists of MoS6 octahedra sharing edges with each other. More surprisingly, the bulk 1T MoS2 crystals undergo a superconducting transition of Tc =4 K, which is the first observation of superconductivity in pure 1T MoS2 phase.

11.
ACS Appl Mater Interfaces ; 10(1): 381-388, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29218981

RESUMO

Highly capacitive carbons are viewed as promising commercial materials for supercapacitors, but few species satisfy the requirements of high capacitance and low cost. Here, we demonstrate an extraordinary porous few-layer carbon by facile Pechini combustion of magnesium nitrate gel, which combined salicylic acid as a complexing agent with magnesium nitrate as an inorganic metal salt. The as-synthesized carbon material delivers a capacitance of 415 F g-1, mostly stemming from a large specific surface area (∼1312 m2 g-1), a fluent channel for transport of the electrolyte, as well as electrochemical redox reactions at O,N-associated active sites. Such porous few-layer carbons may accelerate the adoption of carbon-based supercapacitors for commercial high-power energy storage applications.

12.
Theranostics ; 7(6): 1531-1542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529636

RESUMO

A new kind of green titania (G-TiO2-x ) with obvious green color was facilely synthesized from black titania (B-TiO2-x ) through subsequently strong ultrasonication. Comparatively, this stable G-TiO2-x shows much enhanced near infrared (NIR) absorption, especially around 920 nm, which can be ascribed to the obvious change of TiO2-x lattice order owing to the effect of ultrasonication. This feature enables G-TiO2-x to be stimulated with 980 nm laser in the combined photodynamic therapy (PDT) and photothermal therapy (PTT), which is greatly beneficial for improving tissue penetration depth. Furthermore, since mitochondria are preferred subcellular organelles for PDT/PTT, G-TiO2-x was further designed to conjugate with triphenylphosphonium (TPP) ligand for mitochondria-targeted PDT/PTT to obtain precise cancer treatment. Attributing to the high mitochondria-targeting efficiency and simultaneously synergistic PDT/PTT, high phototherapeutic efficacy and safety with a much lower laser power density (980 nm, 0.72 W cm-2) and low materials dosage were achieved both in vitro and in vivo. In addition, negligible toxicity was found, indicating high biocompatibility. This novel G-TiO2-x could provide new strategies for future precise minimal/non-invasive tumor treatment.


Assuntos
Antineoplásicos/análise , Hipertermia Induzida/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/análise , Titânio/análise , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Análise Espectral , Titânio/administração & dosagem , Titânio/química , Resultado do Tratamento
13.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429506

RESUMO

SnO2 -based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2-x , which homogenizes the redox reactions and stabilizes fine, fracture-resistant Sn precipitates in the Li2 O matrix. Such fine Sn precipitates and their ample contact with Li2 O proliferate the reversible Sn → Li x Sn → Sn → SnO2 /SnO2-x cycle during charging/discharging. SnO2-x electrode has a reversible capacity of 1340 mAh g-1 and retains 590 mAh g-1 after 100 cycles. The addition of highly conductive, well-dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g-1 remaining after 100 cycles at 0.2 A g-1 with 700 mAh g-1 at 2.0 A g-1 . Conductivity-directed microstructure development may offer a new approach to form advanced electrodes.

14.
J Am Chem Soc ; 139(13): 4623-4626, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28306256

RESUMO

Since interface superconductivity was discovered at the interface between two insulating layers LaAlO3 and SrTiO3, such interface-induced superconducting systems have been a research hotspot in superconductivity. Here, we report homogeneous interfaces formed by stacking chemically exfoliated monolayer TaS2 nanosheets randomly. Enhanced superconductivity of Tc = 3 K is observed, compared with 0.8 K of parent 2H-TaS2. The measurement of heat capacity shows the increase of electronic specific-heat coefficient γ of restacked TaS2 nanosheets compared to parent 2H-TaS2 crystals. Density functional theory calculations indicate that increase and delocalization of electron states near the Fermi surface due to the homogeneous interfaces effects could account for the enhanced superconductivity.

15.
Dalton Trans ; 46(4): 1047-1051, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28009899

RESUMO

Black titania prepared by metal-reduction methods is systematically studied and found the best controllable Mg-reduction method. Colored titania products from white, light blue, dark blue, to black were obtained with a crystalline/amorphous core-shell structure. The black titania shows a five times higher H2 production rate in photoelectrochemical (PEC) water splitting.

16.
Adv Mater ; 28(40): 8945-8949, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27561130

RESUMO

A plasma oxidation method is developed to fabricate atomic-scale pores in the basal planes of electrochemically inert TaS2 nanosheets to functionalize the 2D crystals with high electrocatalysis for hydrogen evolution reaction. Quantitative measurements of under-coordinated atoms at edges of the pores by aberration-corrected transmission electron microscopy reveal the intrinsic correlation between the defective atomic sites and electrocatalytic activities of 2D TaS2 .

17.
Nanoscale ; 8(8): 4705-12, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26858035

RESUMO

Hydrogenated black titania, with a crystalline core/amorphous shell structure, has attracted global interest due to its excellent photocatalytic properties. However, the understanding of its structure-property relationships remains a great challenge and a more effective method to produce hydrogenated titania is desirable. Herein, we report a TiH2 assisted reduction method to synthesize bluish hydrogenated titania (TiO2-x:H) that is highly crystallized. The characteristic amorphous shells, which are essential for the enhancement of solar absorption and photocatalysis in many reported hydrogenated titania, are completely removed by hydrogen peroxide. The blue TiO2-x:H sample without amorphous shells delivers not only significantly improved visible- and infrared-light absorption but also greatly enhanced photocatalytic activity compared to pristine TiO2. Its water decontamination is 2.5 times faster and the hydrogen production was 1.9-fold higher over pristine TiO2. Photoelectrochemical measurement reveals greatly improved carrier density and photocurrent (a 4.3-fold increase) in the reduced TiO2-x:H samples. This work develops a facile and versatile method to prepare hydrogenated titania and proposes a new understanding of the hydrogenated titania that doped hydrogen atoms, instead of the amorphous shells, are essential for its high photocatalytic performance.

18.
Zhongguo Fei Ai Za Zhi ; 19(2): 77-81, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26903160

RESUMO

BACKGROUND: In recent years, the incidence and mortality of lung cancer is rising. It has become the leading cause of death of malignant tumors in China. The aim of this study is to explore the trend of mortality and years of life lost due to lung cancer in residents in Xiamen, so as to provide the basis data on preventing lung cancer in Xiamen. METHODS: The data of residents in Xiamen dying of lung cancer from 2005 to 2014 was collected and cleared up to calculate the evaluation indexes including the mortality rate, the average potential life lost (AYLL), and the average percentage change (APC) of mortality rate. GM(1,1) model was used to predict the future mortality and AYLL. RESULTS: From 2005 to 2014, the average mortality rate of lung cancer in residents in Xiamen was 28.58 per 100,000 persons, of which in male was 2.90 times as that in female. The APC was 4.86%. The AYLL, which was 7.8 years, had decline trend from 2005 to 2014. The mean absolute percentage errors between observed values and fitted values were 2.16%-8.83%. The mortality rate and AYLL of lung cancer in residents in Xiamen would increase from 2015 to 2019. CONCLUSIONS: The mortality of lung cancer increased year by year in Xiamen. There are both increasing trend of mortality and years of life lost in future. So we should pay more attentions on preventing and curing of lung cancer.


Assuntos
Neoplasias Pulmonares/mortalidade , China/epidemiologia , Feminino , Humanos , Neoplasias Pulmonares/epidemiologia , Masculino
19.
Dalton Trans ; 45(9): 3888-94, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26906245

RESUMO

Black titania, with greatly improved solar absorption, has demonstrated its effectiveness in photocatalysis and photoelectrochemical cells (PEC), inspiring us to explore the blackening of other wide band-gap oxide materials for enhanced performance. Herein, we report the fabrication of black, reduced Nb2O5 nanorods (r-Nb2O5), with active exposed (001) surfaces, and their enhanced photocatalytic and PEC properties. Black r-Nb2O5 nanorods were obtained via reduction of pristine Nb2O5 by molten aluminum in a two-zone furnace. Unlike the black titania, r-Nb2O5 nanorods are well-crystallized, without a core-shell structure, which makes them outstanding in photocatalytic stability. Substantial Nb(4+) cation and oxygen vacancies (VO) were introduced into r-Nb2O5, resulting in the enhanced absorption in both the visible and near-infrared regions and improved charge separation and transport capability. The advantage of the r-Nb2O5 was also proved by its more efficient photoelectrochemical performance (138 times at 1.23 VRHE) and higher photocatalytic hydrogen-generation activity (13 times) than pristine Nb2O5. These results indicate that black r-Nb2O5 is a promising material for PEC application and photocatalysis.

20.
Nanoscale ; 8(7): 4054-62, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26818532

RESUMO

Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the negative electrode. In this unique design, NiO nanosheets are used as pseudocapacitive materials and TiO2-x:N nanoparticles serve as the conductive agent. Owing to the excellent electrical conductivity of TiO2-x:N and well defined "particle on sheet" planar structure of NiO/TiO2-x:N composites, the 2D morphology of the decorated NiO nanosheets is completely retained, which efficiently reinforces the pseudocapacitive activity and flexibility of the whole all solid state device. The maximum specific capacitance of fabricated the NiO/TiO2-x:N//mesoporous graphene supercapacitor can reach 133 F g(-1), which is 2 and 4 times larger than the values of the NiO based ASSSC employing graphene and carbon black as the conductive agent, respectively. In addition, the optimized ASSSC displays intriguing performances with an energy density of 47 W h kg(-1) in a voltage region of 0-1.6 V, which is, to the best of our knowledge, the highest value for flexible ASSSC devices. The impressive results presented here may pave the way for promising applications of black titania in high energy density flexible storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...