Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845347

RESUMO

Plant senescence is an integrated program of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species, WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, ROS and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.

2.
Opt Lett ; 49(11): 2994-2997, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824311

RESUMO

We reported on the spectral properties and dual-wavelength laser performances of a novel, to the best of our knowledge, Nd:Gd1.8Y1.2ScAl4O12 (Nd:GYSAG) crystal for the first time. The absorption spectra, emission spectra, and fluorescence lifetime were systematically investigated. Further, a continuous-wavelength (CW) laser output power up to 5.02 W was obtained under an absorbed pump power of 9.45 W with slope and optical-to-optical efficiencies of 59.4% and 53.1%, respectively, at 1061.2 and 1063.2 nm. A stable passively Q-switched (PQS) laser employing Cr:YAG as a saturable absorber (SA) was realized. The maximum average output power of 0.756 W with a slope of near 34.4% was obtained with the pulse width, pulse energy, and peak power of 14.0 ns, 128.1 µJ, and 9.15 kW, respectively. The results indicate that the Nd:GYSAG crystal is an excellent laser medium for generating a high-efficiency dual-wavelength laser and has potential in terahertz (THz) laser generation.

3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 827-836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646771

RESUMO

The proportion and area of ratoon rice planting in China have been substantially increased, due to continuous improvement of rice breeding methods and consecutive innovation of cultivation technology, which has developed into one of rice planting modes with significant production efficiency. Combining the experience in research and practice, from the perspective of crop physiology and ecology, we reviewed the current situation and prospects of high-yielding formation and physiological mechanisms of ratoon rice. We focused on four key aspects: screening and breeding of ratoon rice cultivars and the classification; suitable stubble height for mechanically harvested ratoon rice, as well as water and fertilizer management; dry matter production and allocation in ratoon rice and the relationship with yield formation; regenerative activity and vigor of ratoon rice roots and their relationship with rhizosphere micro-ecological characteristics. As for the extending of mechanized low-cut stubbles ratoon rice technique, we should properly regulate the rhizosphere system, coordinate rhizosphere nutrient supply, germination of axillary buds, and tillering regeneration, to achieve the target of "four-high-one-low", that is high regeneration coefficient, high number of regeneration panicle, high harvest index, high yield, high quality, low-carbon and safe, aiming to improve the sustainability of ratoon rice industry.


Assuntos
Oryza , Oryza/crescimento & desenvolvimento , China , Produção Agrícola/métodos , Rizosfera , Melhoramento Vegetal , Agricultura/métodos , Fertilizantes , Raízes de Plantas/crescimento & desenvolvimento
4.
Sci Total Environ ; 919: 170716, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325450

RESUMO

Microplastics (MPs) in aquatic environments provide a new ecological niche that facilitates the attachment of antibiotic-resistance genes (ARGs) and pathogens. However, the effect of particle size on the colonization of antibiotic resistomes and pathogens remains poorly understood. To address this knowledge gap, this study explored the antibiotic resistome and core microbiome on three distinct types of MPs including polyethylene, polypropylene, and polystyrene (PS), with varying sizes of 30, 200, and 3000 µm by metagenomic sequencing. Our finding showed that the ARG abundances of the PS type increased by 4-folds with increasing particle size from 30 to 3000 µm, and significant differences in ARG profiles were found across the three MP types. In addition, the concentrations of ARGs and mobile genetic elements (MGEs) were markedly higher in the MPs than in the surrounding water, indicating their enrichment at these artificial interfaces. Notably, several pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Legionella pneumophila were enriched in MP biofilms, and the co-occurrence of ARGs and virulence factor genes (VFGs)/MGEs suggested the presence of pathogenic antibiotic-resistant microbes with potential mobility. Both redundancy analysis (RDA) and structural equation modeling (SEM) demonstrated that physicochemical properties such as zeta potential, MP size, and contact angle were the most significant contributors to the antibiotic resistome. Strikingly, no significant differences were observed in the health risk scores of the ARG profiles among different sizes and types of MPs. This study expands our knowledge on the impact of MP size on microbial risks, thus enhancing our understanding of the potential health hazards they pose.


Assuntos
Microbiota , Microplásticos , Antibacterianos/farmacologia , Genes Bacterianos , Plásticos , Rios , Poliestirenos/química , Polipropilenos/química
5.
Plants (Basel) ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005807

RESUMO

Crop perennialization has garnered global attention recently due to its role in sustainable agriculture. However, there is still a lack of detailed information regarding perennial rice's regenerative characteristics and physiological mechanisms in crop ratooning systems with different rice stubble heights. In addition, the response of phytohormones to varying stubble heights and how this response influences the regenerative characteristics of ratoon rice remains poorly documented. Here, we explored the regenerative characteristics and physiological mechanisms of an annual hybrid rice, AR2640, and a perennial rice, PR25, subjected to different stubble heights (5, 10, and 15 cm). The response of phytohormones to varying stubble heights and how this response influences the regenerative characteristics of ratoon rice were also investigated. The results show that PR25 overwintered successfully and produced the highest yield, especially in the second ratoon season, mainly due to its extended growth duration, higher number of mother stems, tillers at the basal nodes, higher number of effective panicles, and heavier grain weight when subjected to lower stubble heights. Further analysis revealed that PR25 exhibited a higher regeneration rate from the lower-position nodes in the stem with lower stubble heights. this was primarily due to the higher contents of phytohormones, especially auxin (IAA) and gibberellin (GA3) at an early stage and abscisic acid (ABA) at a later stage after harvesting of the main crop. Our findings reveal how ratoon rice enhances performance based on different stubble heights, which provides valuable insights and serves as crucial references for delving deeper into cultivating high-yielding perennial rice.

6.
7.
iScience ; 26(3): 106216, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36994183

RESUMO

The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.

8.
Sci Total Environ ; 874: 162301, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36801325

RESUMO

Secondary water supply systems (SWSSs) are widely used to supply water to high-rise households in urban residential buildings. A special mode of double tanks with one used while another was spared was noted in SWSSs, which would facilitate microbial growth due to longer water stagnation in the spare tank. There are limited studies on the microbial risk of water samples in such SWSSs. In this study, the input water valves of the operational SWSSs consisting of double tanks were artificially closed and opened on time. Propidium monoazide-qPCR and high-throughput sequencing were performed to systematically investigate the microbial risks in water samples. After closing the tank input water valve, it may take several weeks to replace the bulk water in the spare tank. The residual chlorine concentration in the spare tank decreased by up to 85 % within 2-3 days compared with that in the input water. The microbial communities in the spare and used tank water samples clustered separately. High bacterial 16S rRNA gene abundance and pathogens-like sequences were detected in the spare tanks. Most antibiotic-resistant genes (11/15) in the spare tanks showed an increase in their relative abundance. Moreover, when both tanks within one SWSS were in use, the water quality of the used tank water samples deteriorated to varying degrees. Overall, running SWSSs with double tanks will reduce the replacement rate of water in one storage tank, and consumers who use taps served by the presented SWSSs may have a higher microbial risk.


Assuntos
Qualidade da Água , Abastecimento de Água , RNA Ribossômico 16S/genética
9.
J Environ Sci (China) ; 125: 148-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375901

RESUMO

Urban villages are unique residential neighborhoods in urban areas in China. Roof tanks are their main form of water supply, and water quality deterioration might occur in this system because of poor hygienic conditions and maintenance. In this study, water samples were seasonally collected from an urban village to investigate the influence of roof tanks as an additional water storage device on the variation in the microbial community structure and pathogenic gene markers. Water stagnation in the roof tank induced significant decreases in chlorine (p < 0.05), residual chlorine was as low as 0.02 mg/L in spring. Propidium monoazide (PMA)-qPCR revealed a one-magnitude higher level of total viable bacterial concentration in roof tank water samples (2.14 ± 1.81 × 105 gene copies/mL) than that in input water samples (3.57 ± 2.90 × 104 gene copies/mL, p < 0.05), especially in spring and summer. In addition, pathogenic fungi, Mycobacterium spp., and Legionella spp. were frequently detected in the roof tanks. Terminal users might be exposed to higher microbial risk induced by high abundance of Legionella gene marker. Spearman's rank correlation and redundancy analysis showed that residual chlorine was the driving force that promoted bacterial colonization and shaped the microbial community. It is worth noted that the sediment in the pipe will be agitated when the water supply is restored after the water outages, which can trigger an increase in turbidity and bacterial biomass. Overall, the findings provide practical suggestions for controlling microbiological health risks in roof tanks in urban villages.


Assuntos
Cloro , Microbiologia da Água , Abastecimento de Água , Bactérias/genética , Reação em Cadeia da Polimerase em Tempo Real , Qualidade da Água
10.
Environ Int ; 170: 107647, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413928

RESUMO

Domestic refrigerator is a widely used appliance to keep food fresh and retard food spoilage in household. However, our understanding of microbial health risk associated with food under such circumstance still remains very poor. Here, typical types of food (vegetable, fish, and pork) were kept in a domestic refrigerator at 4 °C for 3-30 days. Temporal dynamics of antibiotic resistome, pathogens, bacterial and fungal communities during this period were investigated via high-throughput quantification and Illumina sequencing technologies. Results showed that a large number (21-134) of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were detected across the three food types, including 10.06 % of high-risk ARGs classified by their risk ranks. Moreover, four bacterial pathogens (i.e., Bacillus cereus, Cronobacter spp., Klebsiella pneumoniae and Staphylococcus aureus) targeted by marker genes including the pathogen-specific genes or virulence factor genes, and some potential fungal pathogens (e.g., Fusarium, Candida, and Aspergillus) were detected, indicating the occurrence of microbial risk even at the normally regarded safe storage temperature. Among all food types, the total bacterial density and ARG abundances in fish rapidly increased after only 3 days, much faster than vegetable and pork after 10 days. In addition, fish samples contained the highest ARG and pathogen abundances, indicating its potentially higher health risk than other food types. Finally, the shifts of ARG pattern were mainly contributed by bacterial communities and MGEs. This study highlights that food preserved in refrigerator at 4 °C could still be an unneglected microbial risk, and raises awareness of improving food safety in domestic environment.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos/genética
11.
J Hazard Mater ; 436: 129261, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739780

RESUMO

The massive food wastes pose a growing health concern for spreading of antibiotic resistance and pathogens due to food spoilage. However, little is known about these microbial hazards during collection, classification, and transportation before eventual treatment. Here, we profiled the temporal variations of antibiotic resistance genes (ARGs), pathogens, bacterial and fungal communities across four typical food wastes (vegetable, fish, meat, and rice) during storage at room temperature in summer (maximum 28-29 °C) of typical southeast city in China. A total of 171 ARGs and 32 mobile genetic elements were detected, and the absolute abundance of ARGs significantly increased by up to 126-fold with the storage time. Additionally, five bacterial pathogens containing virulence factor genes were detected, and Klebsiella pneumoniae was persistently detected throughout the storage time in all food types except rice. Moreover, fungal pathogens (e.g., Aspergillus, Penicillium, and Fusarium) were also frequently detected. Notably, animal food wastes were demonstrated to harbor higher abundance of ARGs and more types of pathogens, indicating a higher level of hazard. Mobile genetic elements and food types were demonstrated to mainly impact ARG profiles and pathogens, respectively. This work provides a comprehensive understanding of the microbial hazards associated with food waste recycling, and will contribute to optimize the food waste management to ensure biosecurity and benefit human health.


Assuntos
Antibacterianos , Eliminação de Resíduos , Ração Animal , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
12.
J Integr Plant Biol ; 64(7): 1411-1429, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510566

RESUMO

Leaf senescence is controlled by a complex regulatory network in which robustness is ensured by the activity of transcription factors and epigenetic regulators. However, how these coordinate the process of leaf senescence remains poorly understood. We found that WHIRLY1 interacts with Histone Deacetylase (HDA)15, a Reduced Potassium Dependence3 (RPD3)/HDA1-type HDA, by using green fluorescent protein-nanotrap-mass spectrum assays. The development-dependent interaction between WHIRLY1 and HDA15 was further confirmed by bimolecular fluorescence complementation assays and co-immunoprecipitation assays in Arabidopsis. Multi-omics genome-wide transcriptome and H3K9 acetylome enrichment analysis showed that HDA15 delays leaf senescence and flowering by repressing the expression of the positive regulators of leaf senescence and flowering, such as LOX2 and LARP1C, and reducing H3K9ac levels at these loci; WHIRLY1 and HDA15 co-target to the region near the transcription start site of a subset of nutrient recycling-related genes (e.g., Glutathione S-transferases 10, non-coding RNA, and photosystem II protein D1 synthesizer attenuator PDIL1-2), as well as WRKY53 and ELF4, and co-repress their expression by removing H3K9 acetylation. Our study revealed a key transcription regulatory node of nutrient recycling and senescence-associated genes involved in leaf senescence and flowering via the recruitment of HDA15 by the single-stranded DNA/RNA-binding protein WHIRLY1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal
13.
Sci Adv ; 8(5): eabl7564, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119922

RESUMO

Nitrogen fixation is critical for the biological productivity of the ocean, but clear mechanistic controls on this process remain elusive. Here, we investigate the abundance, activity, and drivers of nitrogen-fixing diazotrophs across the tropical western North Pacific. We find a basin-scale coherence of diazotroph abundances and N2 fixation rates with the supply ratio of iron:nitrogen to the upper ocean. Across a threshold of increasing supply ratios, the abundance of nifH genes and N2 fixation rates increased, phosphate concentrations decreased, and bioassay experiments demonstrated evidence for N2 fixation switching from iron to phosphate limitation. In the northern South China Sea, supply ratios were hypothesized to fall around this critical threshold and bioassay experiments suggested colimitation by both iron and phosphate. Our results provide evidence for iron:nitrogen supply ratios being the most important factor in regulating the distribution of N2 fixation across the tropical ocean.

14.
Sci Total Environ ; 806(Pt 2): 150616, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592279

RESUMO

Stagnant water can cause water quality deterioration and, in particular, microbiological contaminations, posing potential health risks to occupants. University buildings were unoccupied with little water usage during the COVID-19 pandemic. It's an opportunity to study microbiological quality of long-term stagnant water (LTSW) in university buildings. The tap water samples were collected for three months from four types of campus buildings to monitor water quality and microbial risks after long-term stagnation. Specifically, the residual chlorine, turbidity, and iron/zinc were disqualified, and the heterotrophic plate counts (HPC) exceeded the Chinese national standard above 100 times. It took 4-54 days for these parameters to recover to the routine levels. Six species of pathogens were detected with high frequency and levels (101-105 copies/100 mL). Remarkably, L. pneumophilia occurred in 91% of samples with turbidity > 1 NTU. The absence of the culturable cells for these bacteria possibly implied their occurrence in a viable but non-culturable (VBNC) status. The bacterial community of the stagnant tap water differed significantly and reached a steady state in more than 50 days. Furthermore, a high concentration of endotoxin (>10 EU/mL) was found in LTSW, which was in accordance with the high proportion of dead bacteria. The results suggested that the increased microbiological risks require more attention and the countermeasures before the building reopens should be taken.


Assuntos
COVID-19 , Abastecimento de Água , Humanos , Pandemias , SARS-CoV-2 , Universidades , Microbiologia da Água , Qualidade da Água
15.
Front Plant Sci ; 12: 720593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589100

RESUMO

Drought and salinity are the two major abiotic stresses constraining the crop yield worldwide. Both of them trigger cellular dehydration and cause osmotic stress which leads to cytosolic and vacuolar volume reduction. However, whether plants share a similar tolerance mechanism in response to these two stresses under natural conditions has seldom been comparatively reported. There are three different ecotypes of reed within a 5 km2 region in the Badanjilin desert of Northwest China. Taking the typical swamp reed (SR) as a control, we performed a comparative study on the adaption mechanisms of the two terrestrial ecotypes: dune reed (DR) and heavy salt meadow reed (HSMR) by physiological and proteomic approaches coupled with bioinformatic analysis. The results showed that HSMR and DR have evolved C4-like photosynthetic and anatomical characteristics, such as the increased bundle sheath cells (BSCs) and chloroplasts in BSCs, higher density of veins, and lower density and aperture of stomata. In addition, the thylakoid membrane fluidity also plays an important role in their higher drought and salinity tolerance capability. The proteomic results further demonstrated that HSMR and DR facilitated the regulation of proteins associated with photosynthesis and energy metabolism, lipid metabolism, transcription and translation, and stress responses to well-adapt to the drought and salinity conditions. Overall, our results demonstrated that HSMR and DR shaped a similar adaption strategy from the structural and physiological levels to the molecular scale to ensure functionality in a harsh environment.

16.
Sci Total Environ ; 786: 147492, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33984704

RESUMO

The emergence of antibiotics and their corresponding antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have posed great challenges to the public health. The paper demonstrates the removal of co-existing tetracycline (TC), its resistant Escherichia coli (E. coli), and ARGs (tetA and tetR) in a mixed system by applying ferrate(VI) (FeVIO42-, Fe(VI)) at pH 7.0. TC was efficiently degraded by Fe(VI), and the rapid inactivation of the resistant E. coli was found with the complete loss of culturability. The results of flow cytometry suggested that the damage of membrane integrity and respiratory activity were highly correlated with the Fe(VI) dosages. Moreover, high-dose Fe(VI) eliminates 6 log10 viable but non-culturable (VBNC) cells and even breaks the cells into fragments. ARGs in extracellular form (e-ARGs) exhibited a high sensitivity of 4.44 log10 removal to Fe(VI). Comparatively, no removal of intracellular ARGs (i-ARGs) was observed due to the multi-protection of cellular structure and rapid decay of Fe(VI). The oxidized products of TC were assessed to be less toxic than the parent compound. Overall, this study demonstrated the superior efficiency and great promise of Fe(VI) on simultaneous removal of antibiotics and their related ARB and ARGs in water.


Assuntos
Escherichia coli , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Ferro , Águas Residuárias
17.
Plant Physiol ; 184(4): 1884-1899, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32900979

RESUMO

Salicylic acid (SA) influences developmental senescence and is spatiotemporally controlled by various mechanisms, including biosynthesis, transport, and conjugate formation. Altered localization of Arabidopsis WHIRLY1 (WHY1), a repressor of leaf natural senescence, in the nucleus or chloroplast causes a perturbation in SA homeostasis, resulting in adverse plant senescence phenotypes. WHY1 loss-of-function mutation resulted in SA peaking 5 d earlier compared to wild-type plants, which accumulated SA at 42 d after germination. SA accumulation coincided with an early leaf-senescence phenotype, which could be prevented by ectopic expression of the nuclear WHY1 isoform (nWHY1). However, expressing the plastid WHY1 isoform (pWHY1) greatly enhanced cellular SA levels. Transcriptome analysis in the WHY1 loss-of-function mutant background following expression of either pWHY1 or nWHY1 indicated that hormone metabolism-related genes were most significantly altered. The pWHY1 isoform predominantly affected stress-related gene expression, whereas nWHY1 primarily controlled developmental gene expression. Chromatin immunoprecipitation-quantitative PCR assays indicated that nWHY1 directly binds to the promoter region of isochorismate synthase1 (ICS1), thus activating its expression at later developmental stages, but that it indirectly activates S-adenosyl- l -Met-dependent methyltransferase1 (BSMT1) expression via ethylene response factor 109 (ERF109). Moreover, nWHY1 repressed expression of Phe ammonia lyase-encoding gene (PAL1) via R2R3-MYB member 15 (MYB15) during the early stages of development. Interestingly, rising SA levels exerted a feedback effect by inducing nWHY1 modification and pWHY1 accumulation. Thus, the alteration of WHY1 organelle isoforms and the feedback of SA are involved in a circularly integrated regulatory network during developmental or stress-induced senescence in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Senescência Celular/fisiologia , Ácido Corísmico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferases Intramoleculares/metabolismo , Metiltransferases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Senescência Celular/genética , Ácido Corísmico/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transferases Intramoleculares/genética , Metiltransferases/genética , Fenilalanina Amônia-Liase/genética
18.
Appl Microbiol Biotechnol ; 104(10): 4533-4545, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193577

RESUMO

Household water purifiers are increasingly used to treat drinking water at the household level, but their influence on the microbiological safety of drinking water has rarely been assessed. In this study, representative purifiers, based on different filtering processes, were analyzed for their impact on effluent water quality. The results showed that purifiers reduced chemical qualities such as turbidity and free chlorine. However, a high level of bacteria (102-106 CFU/g) was detected at each stage of filtration using a traditional culture-dependent method, whereas quantitative PCR with propidium monoazide (PMA) treatment showed 106-108 copies/L of total viable bacteria in effluent water, indicating elevated microbial contaminants after purifiers. In addition, high-throughput sequencing revealed a diverse microbial community in effluents and membranes. Proteobacteria (22.06-97.42%) was the dominant phylum found in all samples, except for purifier B, in which Melainabacteria was most abundant (65.79%). For waterborne pathogens, Escherichia coli (100-106 copies/g) and Pseudomonas aeruginosa (100-105 copies/g) were frequently detected by qPCR. Sequencing also demonstrated the presence of E. coli (0-6.26%), Mycobacterium mucogenicum (0.01-3.46%), and P. aeruginosa (0-0.16%) in purifiers. These finding suggest that water from commonly used household purifiers still impose microbial risks to human health.


Assuntos
Bactérias/isolamento & purificação , Água Potável/microbiologia , Viabilidade Microbiana , Purificação da Água/instrumentação , Qualidade da Água , Bactérias/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Filtração/instrumentação , Filtração/normas , Humanos , Mycobacteriaceae/genética , Mycobacteriaceae/isolamento & purificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação
19.
Folia Microbiol (Praha) ; 65(2): 371-380, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31392506

RESUMO

Microbial contamination poses a great threat to aviation system security through mechanisms such as microbiologically influenced corrosion (MIC), fuel filter clogging, and fuel deterioration. In this study, a survey of microbial contamination in aviation fuel obtained from aircraft fuel tanks was performed to test the relationship between microbial contamination and aircraft service life. The contaminating microorganisms were counted, isolated, identified, and subjected to preliminary characterization. A low risk of microbial contamination in the selected samples was confirmed, and there was no significant difference in the counts between culturable bacteria and fungi (p > 0.05). Phylogenetic analysis tree indicated that the diversity of culturable microorganisms was rather low, with 17 bacterial isolates belonging to 13 genera and 12 fungal isolates belonging to 5 genera. No yeast was isolated. The growth characteristics of these isolates indicated that the aircraft fuel tanks harbored various microorganisms that were able to utilize the aviation fuel as a source of carbon and energy. Meanwhile, some isolates caused emulsification and produced acid. The conclusions of this study were that various hazardous microorganisms can root in aircraft aviation fuel tanks. There was no relationship between microbial contamination and aircraft service life (p > 0.05), and continuous good maintenance suppressed microbial proliferation.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Gasolina/microbiologia , Aeronaves , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Gasolina/análise , Filogenia
20.
Environ Int ; 135: 105351, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794937

RESUMO

Frequent heavy-metal pollution accidents severely deteriorated the source water quality of drinking water treatment plants (DWTP). Limited data have explicitly addressed the impact of these incidents on bacterial antibiotic resistance (BAR). In present study, we investigated the shift of antibiotic resistome caused by heavy metal pollution incidents via simulating an arsenic shock loading [As (III)], along with the associated risks imposed on drinking water systems. The results indicated that a quick co-selection of antibiotic resistant bacteria (ARB) was achieved after exposure to 0.2-1 mg/L As (III) for only 6 h, meanwhile, there was an increase of relative abundance of antibiotic resistance genes (ARGs) and mobile genetic elements. Most of the co-selected BAR could be maintained for at least 4 days in the absence of As (III) and antibiotics, implying that the pollution in source water possibly contributed to the preservation and proliferation of antibiotic resistance determinants in the subsequent DWTP. Bacterial community structure analysis showed a strong correlation between bacterial community shift and BAR promotion, and enrichment of opportunistic bacteria (e.g. Escherichia-Shigella, Empedobacter sp. and Elizabethkingia sp.). The results indicated a potential epidemiological threat to the public due to accident-level arsenic contamination in the source water. This study gave insight into understanding the source water pollution accidents from the perspective of bio-hazard and biological risks, and highlighted a neglected important source of BAR in drinking water systems.


Assuntos
Arsênio , Água Potável , Farmacorresistência Bacteriana , Genes Bacterianos , Abastecimento de Água , Acidentes , Antibacterianos , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...