Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 847114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360684

RESUMO

Long-chain omega-3 polyunsaturated fatty acids (LC-ω3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play key roles in physiological functions and disease prevention. The nutrient gap in meeting LC-ω3 intake recommendations in the U.S. and globally can be addressed by alternative sources of LC-ω3. This randomized, placebo-controlled, seamless phase I/II study evaluated the pharmacokinetics, safety, and efficacy of a transgenic LC-ω3-rich canola oil in healthy adults. Participants (n = 33/group) were randomized to receive low-, mid-, or high-dose of the LC-ω3-rich oil (providing 285, 570, or 1,140 mg LC-ω3 PUFA, respectively) or placebo (corn oil). After one dose, plasma ω3 (primary outcome) levels were assessed over a 72 h pharmacokinetic period. Whole blood and red blood cells (RBC) ω3 and serum cardiovascular biomarkers were assessed during a 16-week continuation period with daily supplementation. Compared to low-dose and placebo, high-dose group showed greater DHA AUC0-72h and C max . A linear response was observed for DHA and EPA AUC0-72h . Compared to placebo, high- and mid-dose groups showed increased whole blood DHA, EPA, α-linolenic acids (ALA) (high-dose only), omega-3 score, and omega-3 index after 4 weeks, and increased DHA and EPA in RBC after 16 weeks (P < 0.05). No changes in cardiovascular biomarkers were seen. Overall, this LC-ω3-rich oil demonstrated good DHA bioavailability and significantly improved short and long-term blood LC-ω3 profiles. Sixteen weeks of daily supplementation of the LC-ω3-rich oil was safe and well-tolerated.

2.
Food Chem ; 260: 145-151, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29699655

RESUMO

The impacts of lipid crystallinity on in vitro digestive lipolysis and bioaccessibility of encapsulated (0.1 wt%) beta-carotene (BC) were investigated for a 15 wt% cocoa butter emulsion prepared as crystalline (i.e. solid emulsions, SE & SE-BC) or undercooled (liquid emulsions, LE & LE-BC) droplets at 25 °C. Particle size distributions (D4,3 ∼0.7 µm), morphology (spherical), polymorphism (beta-V), thermal behavior (peak melting ∼30 °C), zeta potential (∼-44 mV) and BC degradation under accelerated lighting conditions were similarly extensive. Following exposure to simulated gastric conditions, duodenal hydrolysis and BC bioaccessibility were lower for SE-BC up to 2 h (P < 0.05). Ultimately, samples with both solid and liquid droplets were hydrolyzed extensively and BC bioaccessibility did not differ (P > 0.05). Therefore, for compositionally equivalent emulsions, lipid droplet solid state delayed digestive lipolysis and bioactive solubilization. These results help to clarify the role of lipid physical state on dietary lipid digestion and bioactive release.


Assuntos
Emulsões/química , Gotículas Lipídicas/química , beta Caroteno/farmacocinética , Gorduras na Dieta , Digestão , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Emulsões/farmacocinética , Humanos , Lipólise/efeitos dos fármacos , Tamanho da Partícula , Polissorbatos/química , Triglicerídeos/química , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA