Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Funct Plant Biol ; 512024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39298656

RESUMO

In recent years, alkaline soda soil has stimulated numerous biological research on plants under carbonate stress. Here, we explored the difference in physiological regulation of rice seedlings between saline (NaCl) and alkaline carbonate (NaHCO3 and Na2 CO3 ) stress. The rice seedlings were treated with 40mM NaCl, 40mM NaHCO3 and 20mM Na2 CO3 for 2h, 12h, 24h and 36h, their physiological characteristics were determined, and organic acid biosynthesis and metabolism and hormone signalling were identified by transcriptome analysis. The results showed that alkaline stress caused greater damage to their photosynthetic and antioxidant systems and led to greater accumulation of organic acid, membrane damage, proline and soluble sugar but a decreased jasmonic acid content compared with NaCl stress. Jasmonate ZIM-Domain (JAZ), the probable indole-3-acetic acid-amido synthetase GH3s, and the protein phosphatase type 2Cs that related to the hormone signalling pathway especially changed under Na2 CO3 stress. Further, the organic acid biosynthesis and metabolism process in rice seedlings were modified by both Na2 CO3 and NaHCO3 stresses through the glycolate/glyoxylate and pyruvate metabolism pathways. Collectively, this study provides valuable evidence on carbonate-responsive genes and insights into the different molecular mechanisms of saline and alkaline stresses.


Assuntos
Carbonatos , Oryza , Reguladores de Crescimento de Plantas , Plântula , Transdução de Sinais , Estresse Fisiológico , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carbonatos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Fotossíntese/efeitos dos fármacos
2.
Sci Total Environ ; 953: 175980, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39236823

RESUMO

Assessing the bioaccessibility and bioavailability of cadmium (Cd) is crucial for effective evaluation of the exposure risk associated with intake of Cd-contaminated rice. However, limited studies have investigated the influence of gut microbiota on these two significant factors. In this study, we utilized in vitro gastrointestinal simulators, specifically the RIVM-M (with human gut microbial communities) and the RIVM model (without gut microbial communities), to determine the bioaccessibility of Cd in rice. Additionally, we employed the Caco-2 cell model to assess bioavailability. Our findings provide compelling evidence that gut microbiota significantly reduces Cd bioaccessibility and bioavailability (p<0.05). Notably, strong in vivo-in vitro correlations (IVIVC) were observed between the in vitro bioaccessibilities and bioavailabilities, as compared to the results obtained from an in vivo mouse bioassay (R2 = 0.63-0.65 and 0.45-0.70, respectively). Minerals such as copper (Cu) and iron (Fe) in the food matrix were found to be negatively correlated with Cd bioaccessibility in rice. Furthermore, the results obtained from the toxicokinetic (TK) model revealed that the predicted urinary Cd levels in the Chinese population, based on dietary Cd intake adjusted by in vitro bioaccessibility from the RIVM-M model, were consistent with the actual measured levels (p > 0.05). These results indicated that the RIVM-M model represents a potent approach for measuring Cd bioaccessibility and underscore the crucial role of gut microbiota in the digestion and absorption process of Cd. The implementation of these in vitro methods holds promise for reducing uncertainties in dietary exposure assessment.


Assuntos
Disponibilidade Biológica , Cádmio , Microbioma Gastrointestinal , Oryza , Oryza/metabolismo , Cádmio/metabolismo , Humanos , Animais , Camundongos , Células CACO-2 , Contaminação de Alimentos/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise
3.
J Am Chem Soc ; 146(39): 27179-27185, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39298293

RESUMO

Selective electrocatalytic transformation of alcohols to aldehydes offers an efficient and environmentally friendly platform for the simultaneous production of fine chemicals and pure hydrogen gas. However, traditional alcohol oxidation reactions (AORs) in aqueous electrolyte unavoidably face competitive reactions (e.g., water oxidation and overoxidations reactions) for the presence of active oxygen species from water oxidation, causing an unwanted decrease in final efficiency and selectivity. Here, we developed an integrated all-solid proton generator-transfer electrolyzer to trigger the pure alcohol splitting reaction (ASR). In this splitting process, only O-H and C-H bonds can be cleaved at the proton generator (Pt nanoparticles), thereby completely avoiding all competitive reactions involving oxygen active species to give a > 99% selectivity to aldehydes. The as-generated protons are transported to the cathode by a three-dimensional (3D) conducting network (assemblies of ionomers and carbon spheres) for efficient hydrogen production. Unlike the poor selectivity (<22%) and durability (<3 h) of a conventional AOR electrolyzer, this ASR electrolyzer could be continuously operated at a low cell voltage of 1.2 V for at least 10 days to give a high Faradaic efficiency of 80-93% for aldehyde production.

4.
Autophagy ; 20(10): 2221-2237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316746

RESUMO

Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Agregados Proteicos , Proteínas Serina-Treonina Quinases , Proteína Sequestossoma-1 , Proteína Sequestossoma-1/metabolismo , Fosforilação , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Autofagia/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células HEK293 , Ubiquitinação , Ligação Proteica
5.
Arch Oral Biol ; 169: 106091, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270423

RESUMO

OBJECTIVES: This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation. MATERIALS AND METHODS: Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 µM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey's tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05. RESULTS: The production of GAG was significantly lower in the ODN group than in the DW group (P < 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (P < 0.05). CONCLUSIONS: CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.

6.
World J Clin Cases ; 12(22): 5225-5228, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39109011

RESUMO

BACKGROUND: Lidocaine/prilocaine (EMLA) cream is a local anesthetic that is applied to the skin or mucosa during painful therapeutic procedures with few reported side effects. CASE SUMMARY: Here, we report the use of dermatoscopy to identify a case of erythema with purpura, a rare side effect, after the application of 5% EMLA cream. CONCLUSION: We conclude that erythema with purpura is caused by irritation and toxicity associated with EMLA, but the specific mechanism by which the toxic substance affects skin blood vessels is unclear. In response to this situation and for cosmetic needs, we recommend tranexamic acid, in addition to routine therapy, to prevent changes in pigmentation in patients with dermatitis.

7.
Molecules ; 29(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39202992

RESUMO

Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in poor electrochemical performance. Nanosizing and compositing with carbon materials are two effective strategies to overcome these issues. In this study, spherical MnFe2O4@xC nanocomposites composed of MnFe2O4 inner cores and tunable carbon shell thicknesses were successfully prepared and utilized as anode materials for SIBs. It was found that the property of the carbon shell plays a crucial role in tuning the electrochemical performance of MnFe2O4@xC nanocomposites and an appropriate carbon shell thickness (content) leads to the optimal battery performance. Thus, compared to MnFe2O4@1C and MnFe2O4@8C, MnFe2O4@4C nanocomposite exhibits optimal electrochemical performance by releasing a reversible specific capacity of around 308 mAh·g-1 at 0.1 A·g-1 with 93% capacity retention after 100 cycles, 250 mAh·g-1 at 1.0 A g-1 with 73% capacity retention after 300 cycles in a half cell, and around 111 mAh·g-1 at 1.0 C when coupled with a Na3V2(PO4)3 (NVP) cathode in a full SIB cell.

8.
Bioorg Med Chem ; 110: 117838, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018794

RESUMO

Prenylation (isopentenylation), a key post-transcriptional modification with a hydrophobic prenyl group onto the biomacromolecules such as RNA and proteins, influences their localization and function. Prenyltransferases mediate this process, while cytokinin oxidases degrade the prenylated adenosine in plants. This review summarizes current progress in detecting prenylation modifications in RNA across species and their effects on protein synthesis. Advanced methods have been developed to label and study these modifications in vitro and in vivo, despite challenges posed by the inert chemical properties of prenyl groups. Continued advancements in bioorthogonal chemistry promise new tools for understanding the precise biological functions of prenylated RNA modifications and other related proteins.


Assuntos
Isopenteniladenosina , Isopenteniladenosina/metabolismo , Isopenteniladenosina/química , RNA/metabolismo , RNA/química , Prenilação , Humanos , Animais , Adenosina/metabolismo , Adenosina/química
9.
Chem Commun (Camb) ; 60(59): 7523-7534, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38957004

RESUMO

Electrocatalytic oxygenation of hydrocarbons with high selectivity has attracted much attention for its advantages in the sustainable and controllable production of oxygenated compounds with reduced greenhouse gas emissions. Especially when utilizing water as an oxygen source, by constructing a water-to-oxygenates conversion system at the anode, the environment and/or energy costs of producing oxygenated compounds and hydrogen energy can be significantly reduced. There is a broad consensus that the generation and transformation of oxygen species are among the decisive factors determining the overall efficiency of oxygenation reactions. Thus, it is necessary to elucidate the oxygen transfer process to suggest more efficient strategies for electrocatalytic oxygenation. Herein, we introduce oxygen transfer routes through redox-mediated pathways or direct oxygen transfer methods. Especially for the scarcely investigated direct oxygen transfer at the anode, we aim to detail the strategies of catalyst design targeting the efficient oxygen transfer process including activation of organic substrate, generation/adsorption of oxygen species, and transformation of oxygen species for oxygenated compounds. Based on these examples, the significance of balancing the generation and transformation of oxygen species, tuning the states of organic substrates and intermediates, and accelerating electron transfer for organic activation for direct oxygen transfer has been elucidated. Moreover, greener organic synthesis routes through heteroatom transfer and molecular fragment transfer are anticipated beyond oxygen transfer.

10.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999579

RESUMO

Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.

11.
J Am Chem Soc ; 146(27): 18451-18458, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935866

RESUMO

Electrocatalytic semihydrogenation of alkynols presents a sustainable alternative to conventional thermal methodologies for the high-value production of alkenols. The design of efficient catalysts with superior catalytic and energy efficiency for semihydrogenation poses a significant challenge. Here, we present the application of an electron-divergent Cu3Pd alloy-based heterojunction in promoting the electrocatalytic semihydrogenation of alkynols to alkenols using water as the proton source. The tunable electron divergence of Cuδ- and Pdδ+, modulated by rectifying contact with nitrogen-rich carbons, enables the concerted binding of active H species from the Volmer step of water dissociation and the C≡C bond of alkynols on Pdδ+ sites. Simultaneously, the pronounced electron divergence of Cu3Pd facilitates the universal adsorption of OH species from the Volmer step and alkynols on the Cuδ- sites. The electron-divergent dual-center substantially boosts water dissociation and inhibition of completing hydrogen evolution to give a turnover frequency of 2412 h-1, outperforming the reported electrocatalysts' value of 7.3. Moreover, the continuous production of alkenols at industrial-related current density (-200 mA cm-2) over the efficient and durable Cu3Pd-based electrolyzer could achieve a cathodic energy efficiency of 45 mol kW·h-1, 1.7 times the bench-marked reactors, promising great potential for sustainable industrial synthesis.

12.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937844

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Assuntos
Aldo-Ceto Redutases , Curcumina , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos , Curcumina/farmacologia , Curcumina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Células Hep G2 , Aldo-Ceto Redutases/metabolismo , Ratos , Masculino , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metformina/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Rodanina/análogos & derivados , Tiazolidinas
13.
Heliyon ; 10(7): e28531, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586380

RESUMO

Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.

14.
Medicine (Baltimore) ; 103(15): e37717, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608077

RESUMO

Cancer incidence is increasingly seen in younger individuals. Molecular distinctions between young and elderly patients at onset are understudied. This study used public databases to explore genomic, transcriptomic, and immune-related features across age groups in cervical cancer. Additionally, it aims to create a prognostic model applicable across diverse age cohorts, enabling precise patient stratification, and personalized therapies. Gene mutations, expression data, and clinicopathological information were obtained from 317 cervical cancer patients. These patients were divided into a young group and an old group based on the median age of onset. The characteristics of differential gene mutation, gene expression, and immune cells analysis were analyzed by R software. Finally, the prognostic model was constructed by univariate Cox, least absolute shrinkage and selection operator, and multivariate Cox regression analyses of angiogenic and immune gene sets. Its validity was further confirmed using an additional 300 cervical squamous cell carcinoma and endocervical adenocarcinoma tissues. Cervical cancer patients at elderly onset age exhibit a significantly higher frequency of NOTCH1 and TP53 driver mutations compared to young patients, along with a notably higher tumor mutational burden. However, there were no significant differences between the 2 groups in terms of genomic instability and age-related mutational signatures. Differential gene expression analysis revealed that the young group significantly upregulated interferon-alpha and gamma responses and exhibited significantly higher activity in multiple metabolic pathways. Immune microenvironment analysis indicated enrichment of dendritic cells and natural killer cells in the young group, while transforming growth factor-ß signature was enriched in the elderly group, indicating a higher degree of immune exclusion. A multigene prognostic model based on angiogenesis and T cell immune gene sets showed excellent prognostic performance independent of clinical factors such as age. High-risk groups identified by the model exhibit significant activation of tumor-promoting processes, such as metastasis and angiogenesis. Our study reveals distinct patterns in cancer-driving mechanisms, biological processes, and immune system status between young and elderly patients at onset with cervical cancer. These findings shed light on the age-specific underlying mechanisms of carcinogenesis. Furthermore, an independent molecular prognostic model is constructed to provide valuable references for patient stratification and the development of potential drug targets.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Idoso , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Prognóstico , Carcinogênese , Fatores Etários , Microambiente Tumoral/genética
15.
Appl Opt ; 63(7): 1719-1726, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437271

RESUMO

On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.

16.
Front Immunol ; 15: 1367265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550589

RESUMO

Background: Evidence shows people living with CHB even with a normal ALT (40U/L as threshold) suffer histological disease and there is still little research to evaluate the potential benefit of antiviral benefits in them. Methods: We retrospectively examined 1352 patients who underwent liver biopsy from 2017 to 2021 and then obtained their 1-year follow-up data to analyze. Results: ALT levels were categorized into high and low, with thresholds set at >29 for males and >15 for females through Youden's Index. The high normal ALT group showed significant histological disease at baseline (56.43% vs 43.82%, p< 0.001), and better HBV DNA clearance from treatment using PSM (p=0.005). Similar results were obtained using 2016 AASLD high normals (male >30, female >19). Further multivariate logistic analysis showed that high normal ALT (both criterias) was an independent predictor of treatment (OR 1.993, 95% CI 1.115-3.560, p=0.020; OR 2.000, 95% CI 1.055-3.793, p=0.034) Both of the models had higher AUC compared with current scoring system, and there was no obvious difference between the two models (AUC:0.8840 vs 0.8835). Conclusion: Male >30 or female >19 and Male >29 or female>15 are suggested to be better thresholds for normal ALT. Having a high normal ALT in CHB provides a potential benefit in antiviral therapy.


Assuntos
Hepatite B Crônica , Humanos , Masculino , Feminino , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/patologia , Alanina Transaminase , Estudos Retrospectivos , DNA Viral , Antivirais/uso terapêutico
17.
Plant Cell Rep ; 43(4): 100, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498220

RESUMO

KEY MESSAGE: The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.


Assuntos
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Melhoramento Vegetal , Alelos , Fatores de Transcrição/genética , Oryza/genética , Oryza/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
18.
Small ; 20(28): e2311393, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38287737

RESUMO

Electrolyte plays a crucial role in ensuring stable operation of lithium metal batteries (LMBs). Localized high-concentration electrolytes (LHCEs) have the potential to form a robust solid-electrolyte interphase (SEI) and mitigate Li dendrite growth, making them a highly promising electrolyte option. However, the principles governing the selection of diluents, a crucial component in LHCE, have not been clearly determined, hampering the advancement of such a type of electrolyte systems. Herein, the diluents from the perspective of molecular polarity are rationally designed and developed. A moderately fluorinated solvent, 1-(1,1,2,2-tetrafluoroethoxy)propane (TNE), is employed as a diluent to create a novel LHCE. The unique molecular structure of TNE enhances the intrinsic dipole moment, thereby altering solvent interactions and the coordination environment of Li-ions in LHCE. The achieved solvation structure not only enhances the bulk properties of LHCE, but also facilitates the formation of more stable anion-derived SEIs featured with a higher proportion of inorganic species. Consequently, the corresponding full cells of both Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 cells utilizing Li thin-film anodes exhibit extended long-term stability with significantly improved average Coulombic efficiency. This work offers new insights into the functions of diluents in LHCEs and provides direction for further optimizing the LHCEs for LMBs.

19.
Opt Express ; 32(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175058

RESUMO

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.

20.
Biol Reprod ; 110(3): 476-489, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091979

RESUMO

Recurrent spontaneous abortion, defined as at least three unexplained abortions occurring before the 20-24 week of pregnancy, has a great impact on women's quality of life. Ephrin receptor B4 has been associated with trophoblast function in preeclampsia. The present study aimed to verify the hypothesis that ephrin receptor B4 regulates the biological functions of trophoblasts in recurrent spontaneous abortion and to explore the upstream mechanism. Ephrin receptor B4 was overexpressed in mice with recurrent spontaneous abortion. Moreover, ephrin receptor B4 inhibited trophoblast proliferation, migration, and invasion while promoting apoptosis. Downregulation of early growth response protein 1 expression in mice with recurrent spontaneous abortion led to ephrin receptor B4 overexpression. Poor expression of WT1-associated protein in mice with recurrent spontaneous abortion reduced the modification of early growth response protein 1 mRNA methylation, resulting in decreased early growth response protein 1 mRNA stability and expression. Overexpression of WT1-associated protein reduced the incidence of recurrent spontaneous abortion in mice by controlling the phenotype of trophoblasts, which was reversed by early growth response protein 1 knockdown. All in all, our findings demonstrate that dysregulation of WT1-associated protein contributes to the instability of early growth response protein 1, thereby activating ephrin receptor B4-induced trophoblast dysfunction in recurrent spontaneous abortion. Our study provides novel insights into understanding the molecular pathogenesis of recurrent spontaneous abortion.


Assuntos
Aborto Habitual , Aborto Espontâneo , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/metabolismo , Aborto Espontâneo/genética , Movimento Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce , Efrinas/metabolismo , Qualidade de Vida , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA