Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31957608

RESUMO

Anticancer peptides (ACPs) eliminate pathogenic bacteria and kill tumor cells, showing no hemolysis and no damages to normal human cells. This unique ability explores the possibility of ACPs as therapeutic delivery and its potential applications in clinical therapy. Identifying ACPs is one of the most fundamental and central problems in new antitumor drug research. During the past decades, a number of machine learning-based prediction tools have been developed to solve this important task. However, the predictions produced by various tools are difficult to quantify and compare. Therefore, in this article, we provide a comprehensive review of existing machine learning methods for ACPs prediction and fair comparison of the predictors. To evaluate current prediction tools, we conducted a comparative study and analyzed the existing ACPs predictor from 10 public literatures. The comparative results obtained suggest that Support Vector Machine-based model with features combination provided significant improvement in the overall performance, when compared to the other machine learning method-based prediction models.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 17(5): 1639-1647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30932845

RESUMO

Accurate prioritization of potential disease genes is a fundamental challenge in biomedical research. Various algorithms have been developed to solve such problems. Inductive Matrix Completion (IMC) is one of the most reliable models for its well-established framework and its superior performance in predicting gene-disease associations. However, the IMC method does not hierarchically extract deep features, which might limit the quality of recovery. In this case, the architecture of deep learning, which obtains high-level representations and handles noises and outliers presented in large-scale biological datasets, is introduced into the side information of genes in our Deep Collaborative Filtering (DCF) model. Further, for lack of negative examples, we also exploit Positive-Unlabeled (PU) learning formulation to low-rank matrix completion. Our approach achieves substantially improved performance over other state-of-the-art methods on diseases from the Online Mendelian Inheritance in Man (OMIM) database. Our approach is 10 percent more efficient than standard IMC in detecting a true association, and significantly outperforms other alternatives in terms of the precision-recall metric at the top-k predictions. Moreover, we also validate the disease with no previously known gene associations and newly reported OMIM associations. The experimental results show that DCF is still satisfactory for ranking novel disease phenotypes as well as mining unexplored relationships. The source code and the data are available at https://github.com/xzenglab/DCF.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Doença/genética , Estudos de Associação Genética/métodos , Algoritmos , Animais , Bases de Dados Genéticas , Genes/genética , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...