Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Curr Pharm Des ; 30(8): 589-596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477209

RESUMO

Chronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease. Simultaneously, compound α-Ketoacid can bind nitrogen-containing metabolites in the blood and accelerate their excretion from the body, thereby reducing the level of metabolic waste, alleviating gastrointestinal reactions in patients, and reducing the inflammatory response and oxidative stress state of the body. Compound α-Ketoacid contains amino acids required by CKD patients. In this review, we explore the relationship between compound α-Ketoacid and microinflammation in patients with CKD. The review indicated that compound α-Ketoacid can improve the microinflammatory state in CKD patients by improving the nutritional status of CKD patients, improving patient's acid-base balance disorder, regulating oxidative stress, improving gut microbiota, and regulating abnormal lipid metabolism.


Assuntos
Inflamação , Cetoácidos , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Cetoácidos/metabolismo , Estresse Oxidativo
2.
Front Endocrinol (Lausanne) ; 14: 1236404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047108

RESUMO

Background: Sodium-glucose co-transporter 2 (SGLT2) inhibitors provide cardiovascular protection for patients with heart failure (HF) and type 2 diabetes mellitus (T2DM). However, there is little evidence of their application in patients with chronic kidney disease (CKD). Furthermore, there are inconsistent results from studies on their uses. Therefore, to explore the cardiovascular protective effect of SGLT2 inhibitors in the CKD patient population, we conducted a systematic review and meta-analysis to evaluate the cardiovascular effectiveness and safety of SGLT2 inhibitors in this patient population. Method: We searched the PubMed® (National Library of Medicine, Bethesda, MD, USA) and Web of Science™ (Clarivate™, Philadelphia, PA, USA) databases for randomized controlled trials (RCTs) of SGLT2 inhibitors in CKD patients and built the database starting in January 2023. In accordance with our inclusion and exclusion criteria, the literature was screened, the quality of the literature was evaluated, and the data were extracted. RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) and Stata® 17.0 (StataCorp LP, College Station, TX, USA) were used for the statistical analyses. Hazard ratios (HRs), odds ratios (ORs), and corresponding 95% confidence intervals (CIs) were used for the analysis of the outcome indicators. Results: Thirteen RCTs were included. In CKD patients, SGLT2 inhibitors reduced the risk of cardiovascular death (CVD) or hospitalization for heart failure (HHF) by 28%, CVD by 16%. and HHF by 35%. They also reduced the risk of all-cause death by 14% without increasing the risk of serious adverse effects (SAEs) and urinary tract infections (UTIs). However, they increased the risk of reproductive tract infections (RTIs). Conclusion: SGLT2 inhibitors have a cardiovascular protective effect on patients with CKD, which in turn can significantly reduce the risk of CVD, HHF, and all-cause death without increasing the risk of SAEs and UTIs but increasing the risk of RTIs.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Estados Unidos , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Doenças Cardiovasculares/etiologia , Insuficiência Cardíaca/complicações
3.
Artigo em Inglês | MEDLINE | ID: mdl-37817516

RESUMO

BACKGROUND: Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia. METHODS: Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-ß1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 µM DFO, and 25 µM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 µM DFO were added, and cells were cultured for another 24 hours before analysis. RESULTS: Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 µM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-ß1, HIF-1α and NCoA-1. CONCLUSION: Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.

4.
Front Immunol ; 14: 1202850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533870

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.


Assuntos
Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Probióticos , Humanos , Feminino , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/complicações , Autoimunidade , Transplante de Microbiota Fecal/efeitos adversos , Probióticos/uso terapêutico
5.
Curr Pharm Des ; 29(21): 1659-1670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37537933

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) has a clinical characteristic of progressive loss of kidney function and becomes a serious health and social concern. SGLT2i (sodium-glucose cotransporter 2 inhibitors), a class of anti-diabetic medications, are shown to reduce cardiovascular and renal events. This systematic review and meta-analysis aimed to assess whether SGLT2i could become a new treatment strategy for CKD for its renal protection and safety. METHODS: Based on predetermined criteria, a bibliographical search was performed on May 31, 2022, by searching the following databases: ISI Web of Science, Embase, PubMed, and the Cochrane Library. Statistical analysis was conducted to assess renal protection and safety of SGLT2i by using Cochrane Review Manager Version 5.3. RESULTS: Thirty randomised controlled trials fulfilled the inclusion criteria and were eligible for this meta-analysis. Our study found that the SGLT2i can sustainably reduce the urine albumin/creatinine ratio (UACR) at different time points and prevent the progression to macroalbuminuria. Before 24 weeks, SGLT2i can decrease the estimated glomerular filtration rate (eGFR) compared to the control group. Interestingly, after 24 weeks, SGLT2i can continuously maintain the increase in eGFR when compared with the control group. Furthermore, SGLT2i can reduce the event rates of incident or worsening nephropathy, a decline in estimated eGFR of ≥ 50%, doubling of serum creatinine level, acute renal failure and renal failure. Interestingly, the renoprotective effects of SGLT2i are independent of its glycemic effects. SGLT2i can reduce the morbidity rate of any related adverse events, any related severe adverse events and SGLT2i have not increased the event rates of urinary tract infection, bone fractures, amputation, and acute pancreatitis when compared with the control group. CONCLUSION: SGLT2i can protect renal function and are safe drug for CKD. SGLT2i are promising therapeutic agents for CKD patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Doença Aguda , Diabetes Mellitus Tipo 2/tratamento farmacológico , Rim , Insuficiência Renal Crônica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
Front Endocrinol (Lausanne) ; 14: 1320603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174337

RESUMO

Diabetic kidney disease (DKD) is a common disorder with numerous severe clinical implications. Due to a high level of fibrosis and inflammation that contributes to renal and cardiovascular disease (CVD), existing treatments have not effectively mitigated residual risk for patients with DKD. Excess activation of mineralocorticoid receptors (MRs) plays a significant role in the progression of renal and CVD, mostly by stimulating fibrosis and inflammation. However, the application of traditional steroidal MR antagonists (MRAs) to DKD has been limited by adverse events. Finerenone (FIN), a third-generation non-steroidal selective MRA, has revealed anti-fibrotic and anti-inflammatory effects in pre-clinical studies. Current clinical trials, such as FIDELIO-DKD and FIGARO-DKD and their combined analysis FIDELITY, have elucidated that FIN reduces the kidney and CV composite outcomes and risk of hyperkalemia compared to traditional steroidal MRAs in patients with DKD. As a result, FIN should be regarded as one of the mainstays of treatment for patients with DKD. In this review, the safety, efficiency, and potential mechanisms of FIN treatment on the renal system in patients with DKD is reviewed.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Inflamação , Fibrose
7.
Cells ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497173

RESUMO

Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of podocytes through several apoptotic pathways or induce autophagy of podocytes through related pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i can also play a role in the above pathways in podocytes. This review mainly summarizes the damage to podocyte structure and function in DKD patients and related signaling pathways, as well as the possible protective mechanism of SGLT2i on podocyte function.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Glucose/metabolismo , Sódio/metabolismo , Diabetes Mellitus/metabolismo
8.
Front Cell Dev Biol ; 10: 910592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268508

RESUMO

Chronic kidney disease (CKD) has a major impact on public health, which could progress to end-stage kidney disease (ESRD) and consume many medical resources. Currently, the treatment for CKD has many flaws, so more effective treatment tools are urgently required for CKD. Mesenchymal stem cells (MSCs) are primitive cells with self-renewal and proliferation capacity and differentiation potential. Extensive preclinical and clinical data has shown that cell-based therapies using MSCs can modulate immunity, inhibit inflammatory factors, and improve renal function in CKD, suggesting that MSCs have the potential to be a new, effective therapeutic tool for CKD. In this review, we will describe different kinds of MSCs and MSCs products for the treatment of CKD in experimental models and clinical trials, potential signaling pathways, therapeutic efficacy, and critical issues that need to be addressed before therapeutic application in humans.

9.
Gigascience ; 112022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056732

RESUMO

BACKGROUND: Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development. RESULTS: Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse. CONCLUSIONS: Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.


Assuntos
Partenogênese , Proteômica , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário , Feminino , Camundongos , Gravidez , Proteoma/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 962635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966088

RESUMO

Diabetic kidney disease (DKD) is one of complications of diabetes mellitus with severe microvascular lesion and the most common cause of end-stage chronic kidney disease (ESRD). Controlling serum glucose remains the primary approach to preventing and slowing the progression of DKD. Despite considerable efforts to control diabetes, people with diabetes develop not only DKD but also ESRD. The pathogenesis of DKD is very complex, and current studies indicate that mesenchymal stromal cells (MSCs) regulate complex disease processes by promoting pro-regenerative mechanisms and inhibiting multiple pathogenic pathways. Extracellular vesicles (EVs) are products of MSCs. Current data indicate that MSC-EVs-based interventions not only protect renal cells, including renal tubular epithelial cells, podocytes and mesangial cells, but also improve renal function and reduce damage in diabetic animals. As an increasing number of clinical studies have confirmed, MSC-EVs may be an effective way to treat DKD. This review explores the potential efficacy and signaling pathways of MSC-EVs in the treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Vesículas Extracelulares , Falência Renal Crônica , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/terapia , Vesículas Extracelulares/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais
11.
J Healthc Eng ; 2022: 7052830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463688

RESUMO

OY-TES-1 is reportedly involved in carcinogenesis and spermatogenesis. However, the tissue distribution of OY-TES-1 in the normal human body remains elusive. This study detected OY-TES-1 expression in human fetal and adult normal tissues by immunohistochemistry. We identified a general principle of OY-TES-1 expression. The expression of OY-TES-1 was found in neurons, smooth muscle cells, and cardiac muscle cells from both fetuses and adults. The connective tissue showed no specific staining throughout the fetal and adult samples. With OY-TES-1-positive staining of the epithelium irregular, OY-TES-1 was strongly expressed in the epithelium of the skin and bladder, as well as hepatocytes, pancreatic islets, and acinous cells during the fetal stage but was not detected in the postnatal period. In contrast to the epithelium of blood vessels, the fetal and adult central hepatic vein and glomeruli showed negative expression of the OY-TES-1 protein. Sex-dimorphism was observed in the distribution of OY-TES-1 in male and female germ cells. Collectively, our results indicate that OY-TES-1 is a member of the cancer-testis antigen and autoantigen, with tissue-specific and period-specific expression patterns, revealing potential contributions of OY-TES-1 to the diagnosis and therapeutic treatment for neoplasms and infertility.


Assuntos
Proteínas de Transporte , Neoplasias , Adulto , Proteínas de Transporte/metabolismo , Feminino , Feto/metabolismo , Humanos , Imuno-Histoquímica , Masculino
12.
Sci Total Environ ; 807(Pt 3): 151030, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673067

RESUMO

Microplastics (MPs) are emerging environmental pollutants and their accumulation in the soil can adversely affect the soil biota. This study aims to employ hyperspectral imaging technology for the rapid screening and classification of MPs in farmland soil. In this study, a total of 600 hyperspectral data are collected from 180 sets of farmland soil samples with a hyperspectral imager in the wavelength range of 369- 988 nm. To begin, the hyperspectral data are preprocessed by the Savitzky-Golay (S-G) smoothing filter and mean normalization. Second, principal component analysis (PCA) is used to minimize the dimensions of the hyperspectral data and hence the amount of data, making the subsequent model easier to construct. The cumulative contribution rate of the first three principal components is reached 98.37%, including the main information of the original spectral data. Finally, three models including decision tree (DT), support vector machine (SVM), and convolutional neural network (CNN) are established, all of which can achieve well classification effects on three MP polymers including polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) in farmland soil. By comparing the recognition accuracy of the three models, the classification accuracy of DT and SVM is 87.9% and 85.6%, respectively. The CNN model based on the S-G smoothing filter obtains the best prediction effect, the classification accuracy reaches 92.6%, exhibiting obvious advantages in classification effect. Altogether, these results show that the proposed hyperspectral imaging technique identifies the soil MPs rapidly and nondestructively, and provides an effective automated method for the detection of polymers, requiring only rapid and simple sample preparation.


Assuntos
Microplásticos , Solo , Fazendas , Imageamento Hiperespectral , Plásticos , Tecnologia
13.
Curr Med Sci ; 40(4): 719-728, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32862383

RESUMO

Cancer testis (CT) antigens have received particular attention in cancer immunotherapy. OY-TES-1 is a member of CT antigens. This study was to evaluate OY-TES-1 expression and immunogenicity in hepatocelluar carcinoma (HCC). OY-TES-1 mRNA expression was detected in 56 HCC tissues and 5 normal liver tissues by reverse transcriptase PCR (RT-PCR). Of the 56 cases of HCC tissues tested, 37 cases had tumor and matched adjacent non-cancer tissues and were subjected to both RT-PCR and quantitative real-time PCR. OY-TES-1 protein was subsequently observed on a panel of tissue microarrays. Sera from patients were tested for OY-TES-1 antibody by ELISA. To identify OY-TES-1 capable of inducing cellular immune response, OY-TES-1 protein was used to sensitize dentritic cells and the cytotoxicity effect was measured in vitro. The results showed that OY-TES-1 mRNA was highly expressed in 41 of the 56 (73.21%) HCC tissues, whereas none in 5 normal liver tissues. OY-TES-1 mRNA was frequently expressed not only in HCC tissues (72.97%, 27/37), but also in paired adjacent non-cancer tissues (64.86%, 24/37). But the mean expression level of OY-TES-1 mRNA in HCC tissues was significantly higher than that in adjacent non-cancer tissues (0.76854 vs. 0.09834, P=0.021). Immunohistochemistry showed that OY-TES-1 protein expression was detected in 6 of the 49 cases of HCC tissues, and absent in 9 cases of normal liver and 6 cases of cirrhosis tissues. Seropositivity was detected in 10 of the 45 HCC patients, but not detected in 17 cirrhosis patients and 76 healthy donors. The specific cytotoxic T cells elicited by OY-TES-1 could kill HLA-A2+ HCC cell line which expressed OY-TES-1. The target lysis was mainly HLA class I -dependent and could be blocked by antibodies against monomorphic HLA class I but not HLA class II molecule. In summary, OY-TES-1 expression is up-regulated in HCC tissues and can be recognized by humoral and cellular responses, which suggests that OY-TES-1 is an attractive target for tumor immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/patologia , Regulação para Cima , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Estadiamento de Neoplasias , Linfócitos T Citotóxicos/imunologia
14.
Oncol Lett ; 13(5): 3080-3086, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28529561

RESUMO

OY-TES-1 is a member of the cancer/testis antigen family that is expressed in healthy testis tissue and certain types of cancerous tissue. The present study aimed to analyze the expression pattern of OY-TES-1 and serum anti-OY-TES-1 antibody concentration in patients with glioma. OY-TES-1 mRNA was detected in 28/36 (78%) of glioma cases using conventional reverse transcription polymerase chain reaction (RT-PCR) analysis. RT-quantitative-PCR revealed that OY-TES-1 was expressed at a higher level in glioma tissues compared with normal adult tissues (with the exception of testis tissue). Anti-OY-TES-1 antibodies were present in the serum of 5/36 (14%) of patients with glioma, but absent in all the serum samples from 107 healthy donors. Immunohistochemical analysis demonstrated that OY-TES-1 protein was expressed in all glioma tissues from patients with anti-OY-TES-1 antibody seropositivity. These results suggest that OY-TES-1 is a novel candidate for glioma immunotherapy.

15.
Oncol Rep ; 33(4): 1965-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673160

RESUMO

Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Transporte/fisiologia , Ciclina D2/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/fisiologia , Tetraspanina 29/fisiologia , Motivos de Aminoácidos , Apoptose , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Adesão Celular , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Divisão Celular , Movimento Celular , Biologia Computacional , Ciclina D2/biossíntese , Ciclina D2/genética , Bases de Dados Genéticas , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/patologia , Proteína Homeobox Nanog , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Bacteriano , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Tetraspanina 29/biossíntese , Tetraspanina 29/genética , Transcriptoma
16.
Int J Clin Exp Pathol ; 7(5): 2350-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966945

RESUMO

MAGE-D4 is a novel member of MAGE super-family. It has preliminarily been demonstrated that MAGE-D4 mRNA is not expressed in majority of normal tissues except for brain and ovary in which only trace amount of MAGE-D4 mRNA can be detected, but predominantly expressed in glioma. MAGE-D4 protein expression and its immunogenicity in glioma have not been elucidated well. This study was designed to analyze MAGE-D4 expression both at mRNA and protein level, characteristic of humoral immune response, and their relationships with glioma patients' clinicopathological parameters. Recombinant MAGE-D4 protein and antiserum were generated. Quantitative RT-PCR analysis revealed that MAGE-D4 mRNA expression was overall up-regulated in 41 glioma specimens compared with that in 14 normal brain tissues. Immunohistochemistry analysis showed that 78% (21/27) glioma tissues expressed MAGE-D4 protein, which was predominantly located in the cytoplasm of tumor cells, but absent in any neuroglia cell of normal brain tissues. ELISA analysis demonstrated that humoral response against MAGE-D4 was detected in 17% (7/41) of glioma patients' sera but not in 77 healthy donors. No apparent correlation was observed between the expression and immunogenicity of MAGE-D4 with clinicopathological parameters of glioma. In summary, these results indicate that MAGE-D4 is highly expressed in glioma and can develop specifically humoral response in glioma patients, which supports that it may be a promising biomarker for glioma diagnosis and immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/imunologia , Glioma/imunologia , Imunidade Humoral , Proteínas de Neoplasias/imunologia , Adolescente , Adulto , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biópsia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/sangue , Glioma/genética , Glioma/patologia , Humanos , Imunoglobulina G/sangue , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Adulto Jovem
17.
Asian Pac J Cancer Prev ; 15(8): 3495-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24870746

RESUMO

Melanoma-associated antigen (MAGE) family genes have been considered as potentially promising targets for anticancer immunotherapy. MAGED4 was originally identified as a glioma-specific antigen. Current knowledge about MAGED4 expression in glioma is only based on mRNA analysis and MAGED4 protein expression has not been elucidated. In the present study, we investigated this point and found that MAGED4 mRNA and protein were absent or very lowly expressed in various normal tissues and glioma cell line SHG44, but overexpressed in glioma cell lines A172,U251,U87-MG as well as glioma tissues, with significant heterogeneity. Furthermore, MAGED4 protein expression was positively correlated with the glioma type and grade. We also found that the expression of MAGED4 inversely correlated with the overall methylation status of the MAGED4 promoter CpG island. Furthermore, when SHG44 and A172 with higher methylation were treated with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-AZA-CdR) reactivation of MAGED4 mRNA was mediated by significant demethylation in SHG44 instead of A172. However, 5-AZA-CdR treatment had no effect on MAGED4 protein in both SHG44 and A172 cells. In conclusion, MAGED4 is frequently and highly expressed in glioma and is partly regulated by DNA methylation. The results suggest that MAGED4 might be a promising target for glioma immunotherapy combined with 5-AZA-CdR to enhance its expression and eliminate intratumor heterogeneity.


Assuntos
Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , RNA Mensageiro/análise , Antígenos de Neoplasias/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Decitabina , Glioma/metabolismo , Humanos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos
18.
Int J Clin Exp Pathol ; 6(12): 2835-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294369

RESUMO

Cancer testis (CT) antigens are attractive targets for cancer immunotherapy because their expression is restricted in normal germ line tissues but frequently detected in variety of tumors. OY-TES-1 is identified as a member of CT antigens. Current knowledge about OY-TES-1 expression in colorectal cancer (CRC) is solely based on mRNA analysis. None of previous researches has studied OY-TES-1 at protein level. In this study, OY-TES-1 polyclonal antibody was generated. The expression of OY-TES-1 mRNA and protein was detected by RT-PCR and immunohistochemistry in 60 CRC and paired adjacent non-tumor tissues, 24 colorectal adenoma and 3 normal colon tissues, respectively. Sera from 73 CRC patients were also tested for OY-TES-1 antibody by ELISA. Our results showed that the frequency of OY-TES-1 mRNA expression was statistically higher in CRC (73.3%, 44/60) than that in adjacent non-tumor tissue (55.0%, 33/60) and colorectal adenoma (45.8%, 11/24). For the first time, OY-TES-1 protein expression was found in (43.3%, 26/60) of CRC tissues, but absent in any of adjacent non-tumor and colorectal adenoma tissues. No OY-TES-1 expression was found in normal colon by either RT-PCR or immunohistochemistry. Furthermore, OY-TES-1 protein expression was correlated with tumor invasion stage (P=0.004) and histological grade (P=0.040). Anti-OY-TES-1 antibody was detected in (9.6%, 7/73) of CRC patients' sera but not in 76 healthy donors. This finding demonstrates that OY-TES-1 is frequently expressed in CRC and is able to induce humoral immune response spontaneously in CRC patients, suggesting that it might be a promising immunotherapy target for CRC.


Assuntos
Adenoma/imunologia , Autoanticorpos/sangue , Biomarcadores Tumorais/imunologia , Proteínas de Transporte/imunologia , Neoplasias Colorretais/imunologia , Imunidade Humoral , Adenoma/sangue , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Biol Int ; 36(10): 917-22, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22651134

RESUMO

OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.


Assuntos
Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular , Células-Tronco Mesenquimais/citologia , Interferência de RNA , Apoptose , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 27(10): 1072-4, 2011 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21968305

RESUMO

AIM: To construct the eukaryotic expression vector pEGFP-N1/ACRBP and stably express ACRBP in human hepatocarcinoma cells, providing functional clues for ACRBP. METHODS: A recombinant plasmid pMAL-C2/ACRBP was used as a template to amplify ACRBP cDNA. The PCR product was ligated into an eukaryotic expression vector pEGFP-N1 to construct a recombinant plasmid pEGFP-N1/ACRBP. Then the pEGFP-N1/ACRBP was transfected by Fugene HD into ACRBP-negative HepG2 cells. The stably transfected clones were selected by G418. RT-PCR and immunohistochemistry were used to detect the expression of ACRBP in HepG2 cells. RESULTS: The eukaryotic expression vector pEGFP-N1/ACRBP was constructed and confirmed by sequencing. The stably transfected HepG2 cells expressed ACRBP. CONCLUSION: The eukaryotic expression vector pEGFP-N1/ACRBP has been successfully constructed and transfected into HepG2 cells, resulting in stable expression of ACRBP.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Transporte/genética , Vetores Genéticos/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...