Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(34): 22949-22957, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39145671

RESUMO

Atomically precise graphene nanoribbons (GNRs) synthesized from the bottom-up exhibit promising electronic properties for high-performance field-effect transistors (FETs). The feasibility of fabricating FETs with GNRs (GNRFETs) has been demonstrated, with ongoing efforts aimed at further improving their performance. However, their long-term stability and reliability remain unexplored, which is as important as their performance for practical applications. In this work, we fabricated short-channel FETs with nine-atom-wide armchair GNRs (9-AGNRFETs). We revealed that the on-state (ION) current performance of the 9-AGNRFETs deteriorates significantly over consecutive full transistor on and off logic cycles, which has neither been demonstrated nor previously considered. To address this issue, we deposited a thin ∼10 nm thick atomic layer deposition (ALD) layer of aluminum oxide (Al2O3) directly on these devices. The integrity, compatibility, electrical performance, stability, and reliability, of the GNRFETs before and/or after Al2O3 deposition were comprehensively studied. The results indicate that the observed decline in electrical device performance is most likely due to the degradation of contact resistance over multiple measurement cycles. We successfully demonstrated that the devices with the Al2O3 layer operate well up to several thousand continuous full cycles without any degradation. Our study offers valuable insights into the stability and reliability of GNR transistors, which could facilitate their large-scale integration into practical applications.

2.
ACS Nano ; 18(26): 16343-16358, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899467

RESUMO

Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA