Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 120, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644398

RESUMO

Putrescine and cadaverine are among the most common biogenic amines (BA) in foods, but it is advisable that their accumulation be avoided. Present knowledge about their toxicity is, however, limited; further research is needed if qualitative and quantitative risk assessments for foods are to be conducted. The present work describes a real-time analysis of the cytotoxicity of putrescine and cadaverine on intestinal cell cultures. Both BA were cytotoxic at concentrations found in BA-rich foods, although the cytotoxicity threshold for cadaverine was twice that of putrescine. Their mode of cytotoxic action was similar, with both BA causing cell necrosis; they did not induce apoptosis. The present results may help in establishing legal limits for both putrescine and cadaverine in food.


Assuntos
Aminas Biogênicas/análise , Cadaverina/análise , Análise de Alimentos/normas , Putrescina/análise , Apoptose/efeitos dos fármacos , Aminas Biogênicas/toxicidade , Cadaverina/toxicidade , Células Cultivadas , Citotoxinas/análise , Citotoxinas/farmacologia , Células HT29 , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Necrose/induzido quimicamente , Putrescina/toxicidade
2.
Food Chem ; 269: 321-326, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100441

RESUMO

Spermine and spermidine are polyamines (PA) naturally present in all organisms, in which they have important physiological functions. However, an excess of PA has been associated with health risks. PA accumulates at quite high concentrations in some foods, but a quantitative assessment of the risk they pose has been lacking. In the present work, the cytotoxicity of spermine and spermidine was evaluated using an in vitro human intestinal cell model, and employing real-time cell analysis. Both spermine and spermidine showed a dose-dependent cytotoxic effect towards the cultured cells, with necrosis the mode of action of spermidine and perhaps also that of spermine. Spermine was more cytotoxic than spermidine, but for both PA the concentrations found to be toxic were above the maximum at which they have been found in food. The present results do not, therefore, support the idea that spermine or spermidine in food is harmful to healthy people.


Assuntos
Espermidina/toxicidade , Espermina/toxicidade , Células Cultivadas , Relação Dose-Resposta a Droga , Análise de Alimentos , Humanos , Intestinos , Poliaminas , Putrescina
3.
Front Microbiol ; 8: 846, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572792

RESUMO

Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

4.
Genome Announc ; 5(17)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28450504

RESUMO

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%.

5.
Food Chem ; 218: 249-255, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27719906

RESUMO

Tyramine and histamine are the biogenic amines (BA) most commonly found at high concentrations in food; they may even appear together at toxic concentrations. The present work examines, via real-time cell analysis, whether histamine and tyramine show synergistic toxicity towards intestinal cell cultures. Employing a constant equipotency ratio, their interaction was examined via the combination index (CI) method of Chou & Talalay. Co-treatment with tyramine and histamine was associated with a stronger cytotoxic effect than was treatment with either BA or on its own. Indeed, a synergistic interaction (CI<1) was observed in the range of concentrations found in foods. The results also show that histamine, at concentrations below the legal limit, increases the cytotoxicity of tyramine at concentrations frequently reached in some foods. The synergistic cytotoxicity of tyramine and histamine should be taken into account when establishing legal limits designed to ensure consumer safety.


Assuntos
Aminas Biogênicas/toxicidade , Células Epiteliais/efeitos dos fármacos , Histamina/toxicidade , Intestinos/citologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Análise de Alimentos , Células HT29/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Tiramina/toxicidade
6.
Front Microbiol ; 7: 1876, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920772

RESUMO

Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72-73%], and chemical composition [moisture (87-88%), protein (5.05-5.65%), fat (0.12-0.15%), sugar (4.8-5.8%), and ash (0.74-1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

7.
Microbiol Mol Biol Rev ; 80(3): 837-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466284

RESUMO

Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.


Assuntos
Enterococcus/fisiologia , Lactobacillus/fisiologia , Streptococcus/fisiologia , Estresse Fisiológico/fisiologia , Biofilmes/crescimento & desenvolvimento , Metabolismo Energético/fisiologia , Fermentação/fisiologia , Microbiologia de Alimentos , Ácido Láctico/metabolismo , Pressão Osmótica/fisiologia , Probióticos/metabolismo , Transdução de Sinais/fisiologia
8.
Bioengineered ; 7(1): 11-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26709457

RESUMO

The scientific evidence supporting the gut microbiome in relation to health maintenance and links with various disease states afflicting humans, from metabolic to mental health, has grown dramatically in the last few years. Strategies addressing the positive modulation of microbiome functionality associated with these disorders offer huge potential to the food and pharmaceutical industries to innovate and provide therapeutic solutions to many of the health issues affecting modern society. Such strategies may involve the use of probiotics and prebiotics as nutritional adjunct therapies. Probiotics are generally recognized to be a good form of therapy to keep harmful, intestinal microorganisms in check, aid digestion and nutrient absorption, and contribute to immune function. Probiotics are reported to improve microbial balance in the intestinal tract and promote the return to a baseline microbial community following a perturbing event (dysbiosis) such as antibiotic therapy. Prebiotics are selectively fermented ingredients that allow specific changes, both in the composition and/or activity in the gastrointestinal microflora, which confers benefits upon host well-being and health.


Assuntos
Bibliometria , Resistência à Doença/imunologia , Microbioma Gastrointestinal/imunologia , Intestinos/microbiologia , Probióticos/farmacologia , Humanos , Imunomodulação , Intestinos/imunologia , Redes e Vias Metabólicas , Prebióticos , Simbiose
9.
Food Chem ; 197(Pt A): 658-63, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26617000

RESUMO

Tyramine and histamine, the most toxic biogenic amines (BA), are often found in high concentrations in certain foods. Prompted by the limited knowledge of BA toxicity, and increasing awareness of the risks associated with high intakes of dietary BA, the in vitro cytotoxicity of tyramine and histamine was investigated. Tyramine and histamine were toxic for HT29 intestinal cell cultures at concentrations commonly found in BA-rich food, as determined by real-time cell analysis. Surprisingly, tyramine had a stronger and more rapid cytotoxic effect than histamine. Their mode of action was also different, while tyramine caused cell necrosis, histamine induced apoptosis. To avoid health risks, the BA content of foods should be reduced and legal limits established for tyramine.


Assuntos
Aminas Biogênicas/toxicidade , Histamina/toxicidade , Tiramina/toxicidade , Apoptose/efeitos dos fármacos , Aminas Biogênicas/análise , Fragmentação do DNA , Análise de Alimentos , Células HT29 , Histamina/análise , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Nível de Efeito Adverso não Observado , Tiramina/análise
10.
Microb Cell Fact ; 14: 208, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26715338

RESUMO

BACKGROUND: Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. RESULTS: This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. CONCLUSION: The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.


Assuntos
Agmatina/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
11.
Genom Data ; 6: 228-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697381

RESUMO

Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514.

12.
Appl Environ Microbiol ; 81(18): 6145-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116671

RESUMO

Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins.


Assuntos
Agmatina/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Óperon , Putrescina/biossíntese
13.
Genome Announc ; 3(3)2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26089428

RESUMO

We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain-isolated from a traditional cheese-produces putrescine, one of the most frequently biogenic amines found in dairy products.

14.
Food Microbiol ; 48: 163-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791004

RESUMO

Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.


Assuntos
Repressão Catabólica , Queijo/microbiologia , Lactococcus lactis/metabolismo , Lactose/metabolismo , Putrescina/biossíntese , Animais , Bovinos , Glucose/metabolismo , Leite/microbiologia
15.
Appl Microbiol Biotechnol ; 99(2): 897-905, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25341400

RESUMO

Lactococcus lactis is the most important starter culture organism used in the dairy industry. Although L. lactis species have been awarded Qualified Presumption of Safety status by the European Food Safety Authority, and Generally Regarded as Safe status by the US Food and Drug Administration, some strains can produce the biogenic amine putrescine. One such strain is L. lactis subsp. cremoris CECT 8666 (formerly L. lactis subsp. cremoris GE2-14), which was isolated from Genestoso cheese. This strain catabolizes agmatine to putrescine via the agmatine deiminase (AGDI) pathway, which involves the production of ATP and two ammonium ions. The present work shows that the availability of agmatine and its metabolization to putrescine allows for greater bacterial growth (in a biphasic pattern) and causes the alkalinization of the culture medium in a dose-dependent manner. The construction of a mutant lacking the AGDI cluster (L. lactis CECT 8666 Δagdi) confirmed the latter's direct role in putrescine production, growth, and medium alkalinization. Alkalinization did not affect the putrescine production pattern and was not essential for increased bacterial growth.


Assuntos
Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Hidrolases/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Putrescina/biossíntese , Compostos de Amônio/metabolismo , Proteínas de Bactérias/genética , Queijo/análise , DNA Bacteriano/genética , Fermentação , Inocuidade dos Alimentos , Concentração de Íons de Hidrogênio , Hidrolases/genética , Lactococcus lactis/genética , Família Multigênica , Mutação
16.
Microb Cell Fact ; 13: 169, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25471381

RESUMO

BACKGROUND: Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. RESULTS: This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. CONCLUSION: pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.


Assuntos
Agmatina/farmacologia , Enterococcus faecalis , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Proteínas de Fluorescência Verde , Regiões Promotoras Genéticas , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
17.
Genome Announc ; 2(5)2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25342694

RESUMO

We here report a 2,801,031-bp annotated draft assembly for the Lactococcus lactis subsp. cremoris GE2-14 genome. This dairy strain produces the biogenic amine putrescine. This sequence may help identify the mechanisms regulating putrescine biosynthesis and throw light on ways to reduce its presence in fermented foods.

18.
Genome Announc ; 2(1)2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24435875

RESUMO

We here report a 3.02-Mbp annotated draft assembly of the Lactobacillus casei 5b genome. The sequence of this biogenic amine-degrading dairy isolate may help identify the mechanisms involved in the catabolism of biogenic amines and perhaps shed light on ways to reduce the presence of these toxic compounds in food.

19.
J Mol Biol ; 426(1): 136-49, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24041572

RESUMO

The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Membrana/biossíntese , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Fluorometria , Genoma Bacteriano , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Metiltransferases/biossíntese , Metiltransferases/genética , Mutação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Seleção Genética , Análise de Sequência de DNA
20.
Genome Announc ; 1(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23887921

RESUMO

Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA