Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Microbiol ; 2: 16197, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27798598

RESUMO

Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule-one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases.


Assuntos
Lipopeptídeos/isolamento & purificação , Metaboloma , Peptídeos Cíclicos/isolamento & purificação , Pseudomonas/química , Vias Biossintéticas , Espectrometria de Massas , Pseudomonas/genética , Triticum/microbiologia
3.
Nat Struct Mol Biol ; 19(7): 677-84, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22683997

RESUMO

Leucyl-tRNA synthetase (LeuRS) produces error-free leucyl-tRNA(Leu) by coordinating translocation of the 3' end of (mis-)charged tRNAs from its synthetic site to a separate proofreading site for editing. Here we report cocrystal structures of the Escherichia coli LeuRS-tRNA(Leu) complex in the aminoacylation or editing conformations, showing that translocation involves correlated rotations of four flexibly linked LeuRS domains. This pivots the tRNA to guide its charged 3' end from the closed aminoacylation state to the editing site. The editing domain unexpectedly stabilizes the tRNA during aminoacylation, and a large rotation of the leucine-specific domain positions the conserved KMSKS loop to bind the 3' end of the tRNA, promoting catalysis. Our results give new insight into the structural dynamics of a molecular machine that is essential for accurate protein synthesis.


Assuntos
Escherichia coli/enzimologia , Leucina-tRNA Ligase/metabolismo , Acilação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Leucina-tRNA Ligase/química , Modelos Moleculares , Conformação Proteica , Edição de RNA
4.
FEBS Lett ; 585(19): 2986-91, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21856301

RESUMO

The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.


Assuntos
Compostos de Boro/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Farmacorresistência Fúngica/genética , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Mutação , Capuzes de RNA/química , Edição de RNA , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Compostos de Boro/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Análise Mutacional de DNA , Leucina-tRNA Ligase/antagonistas & inibidores , Leucina-tRNA Ligase/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Eletricidade Estática
5.
Mol Cell ; 11(4): 951-63, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12718881

RESUMO

The aminoacyl-tRNA synthetases link tRNAs with their cognate amino acid. In some cases, their fidelity relies on hydrolytic editing that destroys incorrectly activated amino acids or mischarged tRNAs. We present structures of leucyl-tRNA synthetase complexed with analogs of the distinct pre- and posttransfer editing substrates. The editing active site binds the two different substrates using a single amino acid discriminatory pocket while preserving the same mode of adenine recognition. This suggests a similar mechanism of hydrolysis for both editing substrates that depends on a key, completely conserved aspartic acid, which interacts with the alpha-amino group of the noncognate amino acid and positions both substrates for hydrolysis. Our results demonstrate the economy by which a single active site accommodates two distinct substrates in a proofreading process critical to the fidelity of protein synthesis.


Assuntos
Aminoácidos/metabolismo , Leucina-tRNA Ligase/metabolismo , Biossíntese de Proteínas/genética , Edição de RNA/genética , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Aminoácidos/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Leucina-tRNA Ligase/genética , Substâncias Macromoleculares , Conformação Molecular , Proteínas/genética , RNA de Transferência/genética
6.
EMBO J ; 21(24): 6874-81, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12486008

RESUMO

Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.


Assuntos
Íntrons , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Splicing de RNA , Western Blotting , Escherichia coli/metabolismo , Deleção de Genes , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...