Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(7): 1684-1687, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560836

RESUMO

Dual-comb spectroscopy in the ultraviolet (UV) and visible would enable broad bandwidth electronic spectroscopy with unprecedented frequency resolution. However, there are significant challenges in generation, detection, and processing of dual-comb data that have restricted its progress in this spectral region. In this work, we leverage robust 1550 nm few-cycle pulses to generate frequency combs in the UV-visible. We combine these combs with a wavelength multiplexed dual-comb spectrometer and simultaneously retrieve 100 MHz comb-mode-resolved spectra over three distinct harmonics at 386, 500, and 760 nm. The experiments highlight the path to continuous dual-comb coverage spanning 200-750 nm, offering extensive access to electronic transitions in atoms, molecules, and solids.

2.
Opt Lett ; 45(13): 3677-3680, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630928

RESUMO

We demonstrate mid-infrared (MIR) frequency combs at 10 GHz repetition rate via intra-pulse difference-frequency generation (DFG) in quasi-phase-matched nonlinear media. Few-cycle pump pulses (≲15fs, 100 pJ) from a near-infrared electro-optic frequency comb are provided via nonlinear soliton-like compression in photonic-chip silicon-nitride waveguides. Subsequent intra-pulse DFG in periodically poled lithium niobate waveguides yields MIR frequency combs in the 3.1-4.8 µm region, while orientation-patterned gallium phosphide provides coverage across 7-11 µm. Cascaded second-order nonlinearities simultaneously provide access to the carrier-envelope-offset frequency of the pump source via in-line f-2f nonlinear interferometry. The high-repetition rate MIR frequency combs introduced here can be used for condensed phase spectroscopy and applications such as laser heterodyne radiometry.

3.
Opt Lett ; 45(9): 2660-2663, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356840

RESUMO

We report an all-fiber approach to generating sub-2-cycle pulses at 2 µm and a corresponding octave-spanning optical frequency comb. Our configuration leverages mature erbium:fiber laser technology at 1.5 µm to provide a seed pulse for a thulium-doped fiber amplifier that outputs 330 mW average power at a 100 MHz repetition rate. Following amplification, nonlinear self-compression in fiber decreases the pulse duration to 9.5 fs, or 1.4 optical cycles. The spectrum of the ultrashort pulse spans from 1 to beyond 2.4 µm and enables direct measurement of the carrier-envelope offset frequency. Our approach employs only commercially available fiber components, resulting in a design that is easy to reproduce in the larger community. As such, this system should be useful as a robust frequency comb source in the near-infrared or as a pump source to generate mid-infrared frequency combs.

4.
Phys Rev Lett ; 124(13): 133904, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302192

RESUMO

The mid-infrared atmospheric window of 3-5.5 µm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiber-laser source of <11 fs pulses in the near infrared, we explore quadratic (χ^{(2)}) nonlinear optical processes leading to frequency comb generation across this entire mid-infrared atmospheric window. With experiments and modeling, we demonstrate intrapulse difference frequency generation that yields few-cycle mid-infrared pulses in a single pass through periodically poled lithium niobate. Harmonic and cascaded χ^{(2)} nonlinearities further provide direct access to the carrier-envelope offset frequency of the near infrared driving pulse train. The high frequency stability of the mid-infrared frequency comb is exploited for spectroscopy of acetone and carbonyl sulfide with simultaneous bandwidths exceeding 11 THz and with spectral resolution as high as 0.003 cm^{-1}. The combination of low noise and broad spectral coverage enables detection of trace gases with concentrations in the part-per-billion range.

5.
Sci Adv ; 5(6): eaaw8794, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187063

RESUMO

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 µm (370 to 3333 cm-1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm-1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...