Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7981): 120-129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674083

RESUMO

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Assuntos
Astrócitos , Sistema Nervoso Central , Ácido Glutâmico , Transdução de Sinais , Adulto , Humanos , Astrócitos/classificação , Astrócitos/citologia , Astrócitos/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Cálcio/metabolismo , Exocitose , Análise da Expressão Gênica de Célula Única , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Proteína Vesicular 1 de Transporte de Glutamato/genética , Deleção de Genes , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo
2.
Nat Aging ; 3(2): 173-184, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37118115

RESUMO

The microvascular inflow tract, comprising the penetrating arterioles, precapillary sphincters and first-order capillaries, is the bottleneck for brain blood flow and energy supply. Exactly how aging alters the structure and function of the microvascular inflow tract remains unclear. By in vivo four-dimensional two-photon imaging, we reveal an age-dependent decrease in vaso-responsivity accompanied by a decrease in vessel density close to the arterioles and loss of vascular mural cell processes, although the number of mural cell somas and their alpha smooth muscle actin density were preserved. The age-related reduction in vascular reactivity was mostly pronounced at precapillary sphincters, highlighting their crucial role in capillary blood flow regulation. Mathematical modeling revealed impaired pressure and flow control in aged mice during vasoconstriction. Interventions that preserve dynamics of cerebral blood vessels may ameliorate age-related decreases in blood flow and prevent brain frailty.


Assuntos
Capilares , Pericitos , Camundongos , Animais , Pericitos/fisiologia , Capilares/fisiologia , Arteríolas/fisiologia , Encéfalo/irrigação sanguínea , Hemodinâmica
3.
Glia ; 71(8): 1830-1846, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994892

RESUMO

Neurovascular coupling (NVC) modulates cerebral blood flow to match increased metabolic demand during neuronal excitation. Activation of inhibitory interneurons also increase blood flow, but the basis for NVC caused by interneurons is unclear. While astrocyte Ca2+ levels rise with excitatory neural transmission, much less is known with regards to astrocytic sensitivity to inhibitory neurotransmission. We performed two-photon microscopy in awake mice to examine the correlation between astrocytic Ca2+ and NVC, evoked by activation of either all (VGATIN ) or only parvalbumin-positive GABAergic interneurons (PVIN ). Optogenetic stimulation of VGATIN and PVIN in the somatosensory cortex triggered astrocytic Ca2+ increases that were abolished by anesthesia. In awake mice, PVIN evoked astrocytic Ca2+ responses with a short latency that preceded NVC, whereas VGATIN evoked Ca2+ increases that were delayed relative to the NVC response. The early onset of PVIN evoked astrocytic Ca2+ increases depended on noradrenaline release from locus coeruleus as did the subsequent NVC response. Though the relationship between interneuron activity and astrocytic Ca2+ responses is complex, we suggest that the rapid astrocyte Ca2+ responses to increased PVIN activity shaped the NVC. Our results underline that interneuron and astrocyte-dependent mechanisms should be studied in awake mice.


Assuntos
Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Astrócitos/metabolismo , Vigília , Circulação Cerebrovascular/fisiologia , Interneurônios
4.
Glia ; 67(1): 37-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427548

RESUMO

Experimental focal cortical ischemic lesions consist of an ischemic core and a potentially salvageable peri-ischemic region, the ischemic penumbra. The activity of neurons and astrocytes is assumed to be suppressed in the penumbra because the electrical function is interrupted, but this is incompletely elucidated. Most experimental stroke studies used young adult animals, whereas stroke is prevalent in the elderly population. Using two-photon imaging in vivo, we here demonstrate extensive but electrically silent, spontaneous Ca2+ activity in neurons and astrocytes in the ischemic penumbra of 18- to 24-month-old mice 2-4 hr after middle cerebral artery occlusion. In comparison, stroke reduced spontaneous Ca2+ activity in neurons and astrocytes in adult mice (3-4 months of age). In aged mice, stroke increased astrocytic spontaneous Ca2+ activity considerably while neuronal spontaneous Ca2+ activity was unchanged. Blockade of action potentials and of purinergic receptors strongly reduced spontaneous Ca2+ activity in both neurons and astrocytes in the penumbra of old stroke mice. This indicates that stroke had a direct influence on mechanisms in presynaptic terminals and on purinergic signaling. Thus, highly dynamic variations in spontaneous Ca2+ activity characterize the electrically compromised penumbra, with remarkable differences between adult and old mice. The data are consistent with the notion that aged neurons and astrocytes take on a different phenotype than young mice. The increased activity of the aged astrocyte phenotype may be harmful to neurons. We suggest that the abundant spontaneous Ca2+ activity in astrocytes in the ischemic penumbra of old mice may be a novel target for neuroprotection strategies. A video abstract of this article can be found at https://youtu.be/AKlwKFsz1qE.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/patologia , Isquemia Encefálica/patologia , Eletrocorticografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
5.
J Physiol ; 596(20): 4983-4994, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079574

RESUMO

KEY POINTS: GABA is an essential molecule for sensory information processing. It is usually assumed to be released by neurons. Here we show that in the dorsal horn of the spinal cord, astrocytes respond to glutamate by releasing GABA. Our findings suggest a novel role for astrocytes in somatosensory information processing. ABSTRACT: Astrocytes participate in neuronal signalling by releasing gliotransmitters in response to neurotransmitters. We investigated if astrocytes from the dorsal horn of the spinal cord of adult red-eared turtles (Trachemys scripta elegans) release GABA in response to glutamatergic receptor activation. For this, we developed a GABA sensor consisting of HEK cells expressing GABAA receptors. By positioning the sensor recorded in the whole-cell patch-clamp configuration within the dorsal horn of a spinal cord slice, we could detect GABA in the extracellular space. Puff application of glutamate induced GABA release events with time courses that exceeded the duration of inhibitory postsynaptic currents by one order of magnitude. Because the events were neither affected by extracellular addition of nickel, cadmium and tetrodotoxin nor by removal of Ca2+ , we concluded that they originated from non-neuronal cells. Immunohistochemical staining allowed the detection of GABA in a fraction of dorsal horn astrocytes. The selective stimulation of A∂ and C fibres in a dorsal root filament induced a Ca2+ increase in astrocytes loaded with Oregon Green BAPTA. Finally, chelating Ca2+ in a single astrocyte was sufficient to prevent the GABA release evoked by glutamate. Our results indicate that glutamate triggers the release of GABA from dorsal horn astrocytes with a time course compatible with the integration of sensory inputs.


Assuntos
Astrócitos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Potenciais Sinápticos , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/fisiologia , Tartarugas
6.
Glia ; 66(2): 348-358, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058353

RESUMO

Cerebral blood flow (CBF) is regulated by the activity of neurons and astrocytes. Understanding how these cells control activity-dependent increases in CBF is crucial to interpreting functional neuroimaging signals. The relative importance of neurons and astrocytes is debated, as are the functional implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic GABAA receptor (GABAA R), increased CBF responses and the fast Ca2+ response in astrocyte end-feet but did not affect Ca2+ responses in astrocyte processes and neuropil. These results suggest that fast Ca2+ increases in the neuropil and astrocyte processes are not necessary for an evoked CBF response. In contrast, as local fast Ca2+ responses in astrocyte end-feet are unaffected by MK801 but increase via GABAA R-dependent mechanisms that also increased CBF responses, we hypothesize that the fast Ca2+ increases in end-feet adjust CBF during synaptic activity.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Cálcio/análise , Circulação Cerebrovascular/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Acoplamento Neurovascular/efeitos dos fármacos , Fatores de Tempo
7.
J Neurosci ; 37(9): 2403-2414, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137973

RESUMO

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3%-4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PgE2) plays a key role for cerebrovascular CO2 reactivity, and that preserved synthesis of glutathione is essential for the full development of this response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57BL/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca2+]i and stimulates COX-1 activity. The enzyme downstream of COX-1 that synthesizes PgE2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the level of glutathione in the brain. We show that, when glutathione levels are reduced, astrocyte calcium-evoked release of PgE2 is decreased and vasodilation triggered by increased astrocyte [Ca2+]iin vitro and by hypercapnia in vivo is inhibited. Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2 Reductions in glutathione levels in aging, stroke, or schizophrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage.SIGNIFICANCE STATEMENT Neuronal activity leads to the generation of CO2, which has previously been shown to evoke cerebral blood flow (CBF) increases via the release of the vasodilator PgE2 We demonstrate that hypercapnia (increased CO2) evokes increases in astrocyte calcium signaling, which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator PgE2 is critically dependent on brain levels of the antioxidant glutathione. These data suggest a novel role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that depleted glutathione levels, which occur in aging and stroke, will give rise to dysfunctional CBF regulation and may result in subsequent neuronal damage.


Assuntos
Astrócitos/metabolismo , Hipocampo/patologia , Hipercapnia/patologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Clonidina/farmacologia , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Vibrissas/inervação
8.
Cereb Cortex ; 27(1): 646-659, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26514162

RESUMO

Higher cognitive functions depend critically on synchronized network activity in the gamma range (30-100 Hz), which results from activity of fast-spiking parvalbumin-positive (PV) interneurons. Here, we examined synaptic activity in the gamma band in relation to PV interneuron activity, stimulation-induced calcium activity in neurons and astrocytes, and cerebral blood flow and oxygen responses in the somatosensory cortex of young adult and old adult mice in vivo using electrical whisker pad stimulation. Gamma activity was reduced in old adult mice, and associated with reduced calcium activity of PV interneurons, whereas the overall responses of neurons and astrocytes were unchanged. Hemodynamic responses were highly correlated to the power of synaptic activity in both young adult and old adult mice, but the hemodynamic response amplitude attained was lower in old adult mice. In comparison, the work-dependent rise in O2 use, that is, the rise in the cerebral metabolic rate of oxygen (CMRO2) evoked by excitatory postsynaptic currents almost doubled in old adult mice. We conclude that PV interneuron function and gamma activity are particularly affected in old adult mice. Alterations in neurovascular coupling and CMRO2 responses may contribute to increased frailty and risk of cognitive decline in aged brains.


Assuntos
Envelhecimento/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Córtex Somatossensorial/fisiologia , Ritmo Teta/fisiologia , Potenciais de Ação , Animais , Astrócitos/fisiologia , Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/sangue , Parvalbuminas/metabolismo , Percepção do Tato/fisiologia , Vibrissas/fisiologia
9.
Ann Neurol ; 80(2): 219-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27314908

RESUMO

OBJECTIVE: Familial hemiplegic migraine type 1 (FHM1) is a subtype of migraine with aura caused by a gain-of-function mutation in the pore-forming α1 subunit of CaV 2.1 (P/Q-type) calcium channels. However, the mechanisms underlying how the disease is brought about and the prolonged aura remain incompletely understood. METHODS: In the anesthetized FHM1 mouse model in vivo, we used two-photon microscopy to measure calcium changes in neurons and astrocytes during somatosensory stimulations and cortical spreading depression (CSD), the putative mechanism of the migraine aura. We combined it with assessment of local field potentials by electrophysiological recordings, cerebral blood flow by laser Doppler flowmetry, and oxygen consumption with measurement of the oxygen tissue tension. RESULTS: During spreading depression, the evoked increase in cytosolic Ca(2+) was larger and faster in FHM1 mice than wild-type (WT) mice. It was accompanied by larger increases in oxygen consumption in FHM1 mice, leading to tissue anoxia, but moderate hypoxia, in WT mice. In comparison, before CSD, Ca(2+) and hemodynamic responses to somatosensory stimulations were smaller in FHM1 mice than WT mice and almost abolished after CSD. The CSD-induced Ca(2+) changes were mitigated by the CaV 2.1 gating modifier, tert-butyl dihydroquinone. INTERPRETATION: Our findings suggest that tissue anoxia might be a mechanism for prolonged aura in FHM1. Reduced Ca(2+) signals during normal network activity in FHM1 as compared to WT mice may explain impaired neurovascular responses in the mutant, and these alterations could contribute to brain frailty in FHM1 patients. Ann Neurol 2016;80:219-232.


Assuntos
Cálcio/metabolismo , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/fisiopatologia , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Oxigênio/metabolismo , Animais , Astrócitos/metabolismo , Canais de Cálcio Tipo N/genética , Ataxia Cerebelar/genética , Depressão Alastrante da Atividade Elétrica Cortical/genética , Estimulação Elétrica , Técnicas de Introdução de Genes , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Neurônios/metabolismo
10.
Cereb Cortex ; 25(9): 2594-609, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692513

RESUMO

Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals.


Assuntos
Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia , Receptores de GABA-A/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Biofísica , Circulação Cerebrovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Estimulação Elétrica , Lateralidade Funcional , Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Pressão Parcial , Piridinas/farmacologia , Sulfonamidas/metabolismo , Tiazóis/metabolismo , Vibrissas/inervação , Zolpidem , Ácido gama-Aminobutírico/farmacologia
11.
Proc Natl Acad Sci U S A ; 110(48): E4678-87, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218625

RESUMO

Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Comunicação Celular/fisiologia , Hemodinâmica/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Fluorescência , Processamento de Imagem Assistida por Computador , Fluxometria por Laser-Doppler , Camundongos , Microscopia Confocal , Córtex Somatossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...