Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 59, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509134

RESUMO

Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon's unique photophysics and capabilities because they expedite the carrier's lifetime.

2.
Phys Chem Chem Phys ; 26(7): 5986-5998, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293812

RESUMO

"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase n-butyltin-oxo cage dications [(BuSn)12O14(OH)6]2+ in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy. Quantum-chemical calculations were used to interpret the observed spectra. At the carbon K-edge, a distinct pre-edge absorption band can be attributed to transitions in which electrons are promoted from C1s orbitals to the lowest unoccupied molecular orbitals, which are delocalized orbitals with strong antibonding (Sn-C σ*) character. At higher energies, the most prominent resonant transitions involve C-C and C-H σ* valence states and Rydberg (3s and 3p) states. In the solid state, the onset of continuum ionization is shifted by ∼5 eV to lower energy with respect to the gas phase, due to the electrostatic effect of the counterions. The O K-edge also shows a pre-edge absorption, but it is devoid of any specific features, because there are many transitions from the different O1s orbitals to a large number of vacant orbitals. In the gas phase, formation of the parent [(BuSn)12O14(OH)6]3+ radical ion is not observed at the C K-edge nor at the O K-edge, because the loss of a butyl group from this species is very efficient. We do observe a number of triply charged photofragment ions, some of which have lost up to 5 butyl groups. Structures of these species are proposed based on quantum-chemical calculations, and pathways of formation are discussed. Our results provide insight into the electronic structure of alkyltin-oxo cages, which is a prerequisite for understanding their response to EUV photons and their performance as EUV photoresists.

3.
Phys Chem Chem Phys ; 26(2): 770-779, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37888897

RESUMO

The present study investigates the photofragmentation behavior of iodine-enhanced nitroimidazole-based radiosensitizer model compounds in their protonated form using near-edge X-ray absorption mass spectrometry and quantum mechanical calculations. These molecules possess dual functionality: improved photoabsorption capabilities and the ability to generate species that are relevant to cancer sensitization upon photofragmentation. Four samples were investigated by scanning the generated fragments in the energy regions around C 1s, N 1s, O 1s, and I 3d-edges with a particular focus on NO2+ production. The experimental summed ion yield spectra are explained using the theoretical near-edge X-ray absorption fine structure spectrum based on density functional theory. Born-Oppenheimer-based molecular dynamics simulations were performed to investigate the fragmentation processes.

4.
Nanoscale ; 14(17): 6331-6338, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297938

RESUMO

We demonstrate that tungsten disulphide (WS2) with thicknesses ranging from monolayer (ML) to several monolayers can be grown on SiO2/Si, Si, and Al2O3 by pulsed direct current-sputtering. The presence of high quality monolayer and multilayered WS2 on the substrates is confirmed by Raman spectroscopy since the peak separations between the A1g-E2g and A1g-2LA vibration modes exhibit a gradual increase depending on the number of layers. X-ray diffraction confirms a textured (001) growth of WS2 films. The surface roughness measured with atomic force microscopy is between 1.5 and 3 Å for the ML films. The chemical composition WSx (x = 2.03 ± 0.05) was determined from X-ray Photoelectron Spectroscopy. Transmission electron microscopy was performed on a multilayer film to show the 2D layered structure. A unique method for growing 2D layers directly by sputtering opens up the way for designing 2D materials and batch production of high-uniformity and high-quality (stochiometric, large grain sizes, flatness) WS2 films, which will advance their practical applications in various fields.

5.
J Phys Chem A ; 126(9): 1496-1503, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35213156

RESUMO

We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.


Assuntos
Cisteína , Cistina , Cisteína/química , Cistina/química , Elétrons , Íons , Espectrometria de Massas por Ionização por Electrospray , Raios X
6.
Phys Chem Chem Phys ; 24(6): 3598-3610, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35103264

RESUMO

Manganese-oxo species catalyze key reactions, including C-H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+ manganese-oxo complexes that represent a wide range of manganese oxidation states. To this end, we apply soft X-ray spectroscopy in a cryogenic ion trap, combined with multiconfigurational wavefunction calculations. We identify [MnO2]+ as a rare high-spin manganese(V) oxo complex with key similarities to six-coordinated manganese(V) oxo systems that are proposed as reaction intermediates in catalytic dioxygen bond formation.


Assuntos
Compostos de Manganês , Manganês , Cátions , Óxidos , Raios X
7.
Phys Chem Chem Phys ; 23(32): 17166-17176, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346432

RESUMO

As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π* band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π* transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π* excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π* transition.

8.
J Phys Condens Matter ; 33(23)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33647896

RESUMO

Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.

9.
Phys Chem Chem Phys ; 22(28): 16215-16223, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643725

RESUMO

We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital - here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.

10.
Inorg Chem ; 58(16): 11100-11109, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31381309

RESUMO

Ge nanoparticles embedded in thin films have attracted a lot of attention due to their promising optical and electronic properties that can be tuned by varying the particle size and choice of matrix material. In this study, Ge nanoparticle formation was investigated for Al-Ge-N based thin films by simultaneous measurements of HAXPES and grazing incidence XRD during in situ annealing in vacuum conditions. As-deposited Al-Ge-N thin films, synthesized by reactive dc magnetron sputtering, consisted of a nanocrystalline (Al1-xGex)Ny solid solution and an amorphous tissue phase of Ge3Ny. Upon annealing to 750 °C, elemental Ge was formed shown by both HAXPES and XRD measurements, and N2 gas was released as measured by a mass spectrometer. Postannealed ex situ analysis by SEM and TEM showed that the elemental Ge phase formed spherical nanoparticles on the surface of the film, with an average size of 210 nm. As the annealing temperature increased further to 850 °C, the Ge particles on the film surface evaporated, while the phase segregation of Ge still could be observed within the film. Thus, these results show the possibility for a controlled synthesis of Ge nanoparticles through annealing of Al-Ge-N thin films to produce materials suitable for use in electronic or optoelectronic devices.

11.
Phys Chem Chem Phys ; 21(12): 6651-6661, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30855620

RESUMO

We present 2p core-level spectra of size-selected aluminum and silicon cluster cations from soft X-ray photoionization efficiency curves and density functional theory. The experimental and theoretical results are in very good quantitative agreement and allow for geometric structure determination. New ground state geometries for Al12+, Si15+, Si16+, and Si19+ are proposed on this basis. The chemical shifts of the 2p electron binding energies reveal a substantial difference for aluminum and silicon clusters: while in aluminum the 2p electron binding energy decreases with increasing coordination number, no such correlation was observed for silicon. The 2p binding energy shifts in clusters of both elements differ strongly from those of the corresponding bulk matter. For aluminum clusters, the core-level shifts between outer shell atoms and the encapsulated atom are of opposite sign and one order of magnitude larger than the corresponding core-level shift between surface and bulk atoms in the solid. For silicon clusters, the core-level shifts are of the same order of magnitude in clusters and in bulk silicon but no obvious correlation of chemical shift and bond length, as present for reconstructed silicon surfaces, are observed.

12.
J Am Soc Mass Spectrom ; 29(11): 2138-2151, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30047073

RESUMO

We have investigated the photoionization and photofragmentation yields of gas-phase multiply protonated melittin cations for photon energies at the K-shell absorption edges of carbon, nitrogen, and oxygen. Two similar experimental approaches were employed. In both experiments, mass selected [melittin+qH]q+ (q=2-4) ions were accumulated in radiofrequency ion traps. The trap content was exposed to intense beams of monochromatic soft X-ray photons from synchrotron beamlines and photoproducts were analyzed by means of time-of-flight mass spectrometry. Mass spectra were recorded for fixed photon energies, and partial ion yield spectra were recorded as a function of photon energy. The combination of mass spectrometry and soft X-ray spectroscopy allows for a direct correlation of protein electronic structure with various photoionization channels. Non-dissociative single and double ionization are used as a reference. The contribution of both channels to various backbone scission channels is quantified and related to activation energies and protonation sites. Soft X-ray absorption mass spectrometry combines fast energy deposition with single and double ionization and could complement established activation techniques. Graphical Abstract ᅟ.

13.
Angew Chem Int Ed Engl ; 57(30): 9310-9314, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29847000

RESUMO

The synthesis and structural characterization of the hitherto unknown parent Co(bz)2+ (bz=benzene) complex and several of its derivatives are described. Their synthesis starts either from a CoCO5+ salt, or directly from Co2 (CO)8 and a Ag+ salt. Stability and solubility of these complexes was achieved by using the weakly coordinating anions (WCAs) [Al(ORF )4 ]- and [F{Al(ORF )3 }2 ]- {RF =C(CF3 )3 } and the solvent ortho-difluorobenzene (o-DFB). The magnetic properties of Co(bz)2+ were measured and compared in the condensed and gas phases. The weakly bound Co(o-dfb)2+ salts are of particular interest for the preparation of further CoI salts, for example, the structurally characterized low-coordinate 12 valence electron Co(Pt Bu3 )2+ and Co(NHC)2+ salts.

14.
Chemistry ; 24(30): 7631-7636, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29637635

RESUMO

Preservation of protein conformation upon transfer into the gas phase is key for structure determination of free single molecules, for example using X-ray free-electron lasers. In the gas phase, the helicity of melittin decreases strongly as the protein's protonation state increases. We demonstrate the sensitivity of soft X-ray spectroscopy to the gas-phase structure of melittin cations ([melittin+qH]q+ , q=2-4) in a cryogenic linear radiofrequency ion trap. With increasing helicity, we observe a decrease of the dominating carbon 1 s-π* transition in the amide C=O bonds for non-dissociative single ionization and an increase for non-dissociative double ionization. As the underlying mechanism we identify inelastic electron scattering. Using an independent atom model, we show that the more compact nature of the helical protein conformation substantially increases the probability for off-site intramolecular ionization by inelastic Auger electron scattering.

15.
ACS Appl Mater Interfaces ; 10(14): 11572-11579, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29560716

RESUMO

4- tert-Butylpyridine ( t-BP) is commonly used in solid state dye-sensitized solar cells (ssDSSCs) to increase the photovoltaic performance. In this report, the mechanism how t-BP functions as a favorable additive is investigated comprehensively. ssDSSCs were prepared with different concentrations of t-BP, and a clear increase in efficiency was observed up to a maximum concentration and for higher concentrations the efficiency thereafter decreases. The energy level alignment in the complete devices was measured using hard X-ray photoelectron spectroscopy (HAXPES). The results show that the energy levels of titanium dioxide are shifted further away from the energy levels of spiro-OMeTAD as the t-BP concentration is increased. This explains the higher photovoltage obtained in the devices with higher t-BP concentration. In addition, the electron lifetime was measured for the devices and the electron lifetime was increased when adding t-BP, which can be explained by the recombination blocking effect at the surface of TiO2. The results from the HAXPES measurements agree with those obtained from density functional theory calculations and give an understanding of the mechanism for the improvement, which is an important step for the future development of solar cells including t-BP.

16.
Phys Chem Chem Phys ; 18(1): 252-60, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608268

RESUMO

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

17.
Phys Chem Chem Phys ; 16(32): 17099-107, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25007378

RESUMO

Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

18.
ACS Nano ; 8(7): 7147-55, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24949826

RESUMO

Solution-processed organometal trihalide perovskite solar cells are attracting increasing interest, leading to high performances over 15% in thin film architectures. Here, we probe the presence of sub gap states in both solid and mesosuperstructured perovskite films and determine that they strongly influence the photoconductivity response and splitting of the quasi-Fermi levels in films and solar cells. We find that while the planar perovskite films are superior to the mesosuperstructured films in terms of charge carrier mobility (in excess of 20 cm(2) V(-1) s(-1)) and emissivity, the planar heterojunction solar cells are limited in photovoltage by the presence of sub gap states and low intrinsic doping densities.

19.
Chemphyschem ; 15(6): 1006-17, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24692317

RESUMO

Key processes in nanostructured dye-sensitized solar cells occur at material interfaces containing, for example, oxides, dye molecules, and hole conductors. A detailed understanding of interfacial properties is therefore important for new developments and device optimization. The implementation of X-ray-based spectroscopic methods for atomic-level understanding of such properties is reviewed. Specifically, the use of the chemical and element sensitivity of photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and resonant photoelectron spectroscopy for investigating interfacial molecular and electronic properties are described; examples include energy matching, binding configurations, and molecular orbital composition. Finally, results from the complete oxide/dye/hole-conductor systems are shown and demonstrate how the assembly itself can affect the molecular and electronic structure of the materials.

20.
Sci Rep ; 4: 4282, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24603319

RESUMO

Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co(2+/3+)(dtbp)3-based device is due to the positive EF shift of NiO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...