Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 125(6): 064501, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632490

RESUMO

The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated. https://doi.org/10.1289/EHP1788.


Assuntos
Anti-Infecciosos/análise , Carbanilidas/análise , Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Triclosan/análise , Cosméticos , Exposição Ambiental , Política Ambiental
4.
J Am Chem Soc ; 135(44): 16689-96, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24090187

RESUMO

The interaction of the metal and support in oxide-supported transition-metal catalysts has been proven to have extremely favorable effects on catalytic performance. Herein, mesoporous Co3O4, NiO, MnO2, Fe2O3, and CeO2 were synthesized and utilized in CO oxidation reactions to compare the catalytic activities before and after loading of 2.5 nm Pt nanoparticles. Turnover frequencies (TOFs) of pure mesoporous oxides were 0.0002­0.015 s(­1), while mesoporous silica was catalytically inactive in CO oxidation. When Pt nanoparticles were loaded onto the oxides, the TOFs of the Pt/metal oxide systems (0.1­500 s(­1)) were orders of magnitude greater than those of the pure oxides or the silica-supported Pt nanoparticles. The catalytic activities of various Pt/oxide systems were further influenced by varying the ratio of CO and O2 in the reactant gas feed, which provided insight into the mechanism of the observed support effect. In situ characterization using near-edge X-ray absorption fine structure (NEXAFS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS) under catalytically relevant reaction conditions demonstrated a strong correlation between the oxidation state of the oxide support and the catalytic activity at the oxide­metal interface. Through catalytic activity measurements and in situ X-ray spectroscopic probes, CoO, Mn3O4, and CeO2 have been identified as the active surface phases of the oxide at the interface with Pt nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...