Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 2): 159533, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270368

RESUMO

We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99 % of the daily produced FIBs and pathogens resulted from combined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservative microbial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.


Assuntos
Criptosporidiose , Cryptosporidium , Animais , Humanos , Rios , Poluição da Água/análise , Microbiologia da Água , Escherichia coli , Monitoramento Ambiental/métodos , Fezes/química , Giardia , Água/análise
2.
J Contam Hydrol ; 251: 104080, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179584

RESUMO

To guarantee proper protection from fecally transmitted pathogen infections, drinking water wells should have a sufficiently large setback distance from potential sources of contamination, e.g. a nearby river. The aim of this study was to provide insight in regards to microbial contamination of groundwater under different flow velocities, which can vary over time due to changes in river stage, season or pumping rate. The effects of these changes, and how they affect removal parameters, are not completely understood. In this study, field tracer tests were carried out in a sandy gravel aquifer near Vienna, Austria to evaluate the ability of subsurface media to attenuate Bacillus subtilis spores, used as a surrogate for Cryptosporidium and Campylobacter. The hydraulic gradient between injection and extraction was controlled by changing the pumping rate (1, 10 l/s) of a pumping well at the test site, building upon previously published work in which tracer tests with a 5 l/s pumping rate were carried out. Attachment and detachment rate coefficients were determined using a HYDRUS-3D model and ranged from 0.12 to 0.76 and 0-0.0013 h-1, respectively. Setback distances were calculated based on the 60-day travel time, as well as a quantitative microbial risk assessment (QMRA) approach, which showed similar results at this site; around 700 m at the highest pumping rate. Removal rates (λ) in the field tests ranged from 0.2 to 0.3 log/m, with lower pumping rates leading to higher removal. It was shown that scale must be taken into consideration when determining λ for the calculation of safe setback distances.


Assuntos
Criptosporidiose , Cryptosporidium , Água Subterrânea , Humanos , Bacillus subtilis , Esporos , Movimentos da Água
4.
Front Microbiol ; 12: 668778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335498

RESUMO

Riverine wetlands are important natural habitats and contain valuable drinking water resources. The transport of human- and animal-associated fecal pathogens into the surface water bodies poses potential risks to water safety. The aim of this study was to develop a new integrative modeling approach supported by microbial source tracking (MST) markers for quantifying the transport pathways of two important reference pathogens, Cryptosporidium and Giardia, from external (allochthonous) and internal (autochthonous) fecal sources in riverine wetlands considering safe drinking water production. The probabilistic-deterministic model QMRAcatch (v 1.1 python backwater) was modified and extended to account for short-time variations in flow and microbial transport at hourly time steps. As input to the model, we determined the discharge rates, volumes and inundated areas of the backwater channel based on 2-D hydrodynamic flow simulations. To test if we considered all relevant fecal pollution sources and transport pathways, we validated QMRAcatch using measured concentrations of human, ruminant, pig and bird associated MST markers as well as E. coli in a Danube wetland area from 2010 to 2015. For the model validation, we obtained MST marker decay rates in water from the literature, adjusted them within confidence limits, and simulated the MST marker concentrations in the backwater channel, resulting in mean absolute errors of < 0.7 log10 particles/L (Kruskal-Wallis p > 0.05). In the scenarios, we investigated (i) the impact of river discharges into the backwater channel (allochthonous sources), (ii) the resuspension of pathogens from animal fecal deposits in inundated areas, and (iii) the pathogen release from animal fecal deposits after rainfall (autochthonous sources). Autochthonous and allochthonous human and animal sources resulted in mean loads and concentrations of Cryptosporidium and Giardia (oo)cysts in the backwater channel of 3-13 × 109 particles/hour and 0.4-1.2 particles/L during floods and rainfall events, and in required pathogen treatment reductions to achieve safe drinking water of 5.0-6.2 log10. The integrative modeling approach supports the sustainable and proactive drinking water safety management of alluvial backwater areas.

5.
Microorganisms ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34442675

RESUMO

Cryptosporidium and Giardia are waterborne protozoa that cause intestinal infections in a wide range of warm-blooded animals. Human infections vary from asymptomatic to life-threatening in immunocompromised people, and can cause growth retardation in children. The aim of our study was to assess the prevalence and diversity of Cryptosporidium and Giardia in urban surface water and in brown rats trapped in the center of Vienna, Austria, using molecular methods, and to subsequently identify their source and potential transmission pathways. Out of 15 water samples taken from a side arm of the River Danube, Cryptosporidium and Giardia (oo)cysts were detected in 60% and 73% of them, with concentrations ranging between 0.3-4 oocysts/L and 0.6-96 cysts/L, respectively. Cryptosporidium and Giardia were identified in 13 and 16 out of 50 rats, respectively. Eimeria, a parasite of high veterinary importance, was also identified in seven rats. Parasite co-ocurrence was detected in nine rats. Rat-associated genotypes did not match those found in water, but matched Giardia previously isolated from patients with diarrhea in Austria, bringing up a potential role of rats as sources or reservoirs of zoonotic pathogenic Giardia. Following a One Health approach, molecular typing across potential animal and environmental reservoirs and human cases gives an insight into environmental transmission pathways and therefore helps design efficient surveillance strategies and relevant outbreak responses.

6.
Environ Sci Technol ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318669

RESUMO

Groundwater contamination and transport of viruses and bacteria in aquifers are a major concern worldwide. To ascertain the ability of these aquifers to remove pathogens, tracer tests with microbial surrogates are carried out. These tests are laborious and may require special permits, and therefore, column tests are often done instead. Unfortunately, results from column tests tend to grossly overestimate removal rates when compared to the field scale, which can lead to an underestimation of groundwater contamination risks. Scale is an important consideration when examining pathogen transport through porous media, as pathogen removal is rarely a linear process. In this study, field tests were carried out with endospores of Bacillus subtilis and coliphage phiX174 over a distance of 25 m in an alluvial gravel aquifer near Vienna, Austria. The sandy gravel material from the field site was also used in column tests with the same tracers. Both attachment-detachment and colloid filtration theory were used to model these tests, as well as log-removal rates per meter. The results show that the spatial removal rate (log/m) is approximately 2 orders of magnitude higher on the column scale, when compared to the field. A comparison with the literature showed a correlation between the heterogeneity of the porous media and the difference in removal rates between the column and field scale.

7.
Sci Total Environ ; 768: 144278, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736313

RESUMO

Rivers are important for drinking water supply worldwide. However, they are often impacted by pathogen discharges via wastewater treatment plants (WWTP) and combined sewer overflows (CSO). To date, accurate predictions of the effects of future changes and pollution control measures on the microbiological water quality of rivers considering safe drinking water production are hindered due to the uncertainty of the pathogen source and transport variables. The aim of this study was to test an integrative approach for an improved understanding of these effects, i.e. climate change and population growth as well as enhanced treatment at WWTPs and/or prevention of CSOs. We applied a significantly extended version of QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines fate and transport modelling with quantitative microbial infection risk assessment. The impact of climatic changes until the period 2035-2049 was investigated by a conceptual semi-distributed hydrological model, based on regional climate model outputs. QMRAcatch was calibrated and validated using site- and source-specific data (human-associated genetic microbial source tracking marker and enterovirus). The study showed that the degree to which future changes affect drinking water safety strongly depends on the type and magnitude of faecal pollution sources and are thus highly site- and scenario-specific. For example, if the load of pathogens from WWTPs is reduced through enhanced treatment, climate-change driven increases in CSOs had a considerable impact. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect. The simultaneous consideration of source apportionment and concentrations of reference pathogens, focusing on human-specific viruses (enterovirus, norovirus) and cross-comparison with bacterial and protozoan pathogens (Campylobacter, Cryptosporidium), was found crucial to quantify these effects. While demonstrated here for a large, wastewater-impacted river, the approach is applicable at other catchments and pollution sources. It allows assessing future changes and selecting suitable pollution control measures for long-term water safety planning.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Animais , Monitoramento Ambiental , Humanos , Rios , Águas Residuárias , Microbiologia da Água , Qualidade da Água
8.
Ultrasonics ; 99: 105955, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31357010

RESUMO

Guided acoustic waves, such as Lamb waves, are widely applied for material characterization, sensing of liquids and the generation of streaming in liquids. There are numerical simulation tools for the prediction of their propagation near a solid-liquid boundary but a demand for complementary measurement techniques for the validation of the simulation results remains. In this contribution it is demonstrated that light refractive vibrometry is a suitable approach for the visualization of the interaction of guided acoustic waves with liquids. For this purpose Lamb waves were excited by piezoelectric transducers on copper plates partially immersed in water. There the fundamental symmetric and antisymmetric modes are converted to compressional waves and quasi-Scholte plate waves below a frequency-thickness product of 1 MHz mm. From the vibrometry scans the wavelengths, radiation angles and pressure amplitudes of the involved modes could be determined and thus theoretical predictions of the attenuation of the Lamb modes and the energy distribution of quasi-Scholte plate waves between the solid substrate and the liquid environment could be confirmed.

9.
Sensors (Basel) ; 18(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425169

RESUMO

The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.

10.
Sci Total Environ ; 627: 450-461, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426167

RESUMO

Characterization of surface water - groundwater interaction in riverbank filtration (RBF) systems is of decisive importance to drinking water utilities due to the increasing microbial and chemical contamination of surface waters. These interactions are commonly assessed by monitoring changes in chemical water quality, but this might not be indicative for microbial contamination. The hydrological dynamics of the infiltrating river can influence these interactions, but seasonal temperature fluctuations and the supply of oxygen and nutrients from the surface water can also play a role. In order to understand the interaction between surface water and groundwater in a highly dynamic RBF system of a large river, bacterial abundance, biomass and carbon production as well as standard chemical parameters were analyzed during a 20 month period under different hydrological conditions. In the investigated RBF system, groundwater table changes exhibited striking dynamics even though flow velocities were rather low under regular discharge conditions. Bacterial abundance, biomass, and bacterial carbon production decreased significantly from the river towards the drinking water abstraction well. The cell size distribution changed from a higher proportion of large cells in the river, towards a higher proportion of small cells in the groundwater. Although biomass and bacterial abundance were correlated to water temperatures and several other chemical parameters in the river, such correlations were not present in the groundwater. In contrast, the dynamics of the bacterial groundwater community was predominantly governed by the hydrogeological dynamics. Especially during flood events, large riverine bacteria infiltrated further into the aquifer compared to average discharge conditions. With such information at hand, drinking water utilities are able to improve their water abstraction strategies and react quicker to changing hydrological conditions in the RBF system.


Assuntos
Monitoramento Ambiental , Água Subterrânea/microbiologia , Microbiologia da Água , Biomassa , Filtração , Rios , Análise Espaço-Temporal
11.
J Environ Qual ; 44(5): 1392-401, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436257

RESUMO

The transport of human adenovirus, nanoparticles, and PRD1 and MS2 bacteriophages was tested in fine granular limestone aquifer material taken from a borehole at a managed aquifer recharge site in Adelaide, South Australia. Comparison of transport and removal of virus surrogates with the pathogenic virus is necessary to understand the differences between the virus and surrogate. Because experiments using pathogenic viruses cannot be done in the field, laboratory tests using flow-through soil columns were used. Results show that PRD1 is the most appropriate surrogate for adenovirus in an aquifer dominated by calcite material but not under high ionic strength or high pH conditions. It was also found that straining due to size and the charge of the colloid were not dominant removal mechanisms in this system. Implications of this study indicate that a certain surrogate may not represent a specific pathogen solely based on similar size, morphology, and/or surface charge. Moreover, if a particular surrogate is representative of a pathogen in one aquifer system, it may not be the most appropriate surrogate in another porous media system. This was apparent in the inferior performance of MS2 as a surrogate, which is commonly used in virus transport studies.

12.
Lab Chip ; 15(1): 43-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25343424

RESUMO

We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.


Assuntos
Acústica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Difusão , Desenho de Equipamento , Som
13.
Sensors (Basel) ; 13(3): 2777-85, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447010

RESUMO

Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.


Assuntos
Acústica , Som , Propriedades de Superfície , Transdutores , Ultrassom
14.
Artigo em Inglês | MEDLINE | ID: mdl-20040436

RESUMO

The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.


Assuntos
Acústica , Lubrificantes/química , Teste de Materiais/métodos , Ultrassonografia/métodos , Espalhamento de Radiação
15.
Wien Med Wochenschr ; 155(7-8): 143-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15966259

RESUMO

In the Eastern Alps, the Dachstein massif with a height of almost 3000 m is an ideal location for investigating the effects of changes in altitude on the human body. A cable car allows an ascent within a few minutes to 2700 m, where the partial pressure of oxygen is about 550 mm of mercury compared to 760 mm at sea level. Ten healthy subjects performed a reaction time task at an altitude of 990 m and 2700 m. The subjects were instructed to perform a right hand index finger movement as fast as possible after a green light had flashed. The green light flashed 50 times. Simultaneously to the task, the electroencephalogram (EEG) was recorded. The event-related desynchronization (ERD) analysis of the EEG data showed that changes in alpha ERD values are not significant, but event-related synchronization (ERS) values in the beta band decrease significantly from around 50 % to 10 %. Furthermore, the mean frequency of the beta band increased from 16.68 Hz to 16.81 Hz (p = 0.0019) with the ascent. The suppressed post-movement beta ERS at an altitude of 2700 m may therefore be interpreted as a result of an increased cortical excitability level when compared with the reference altitude of 990 m above sea level.


Assuntos
Altitude , Sincronização Cortical , Eletroencefalografia , Potenciais Evocados/fisiologia , Meios de Transporte , Adulto , Ritmo alfa , Atenção/fisiologia , Áustria , Ritmo beta , Córtex Cerebral/fisiologia , Feminino , Humanos , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Tempo de Reação/fisiologia , Valores de Referência , Processamento de Sinais Assistido por Computador , Software
16.
Neurosci Lett ; 377(1): 53-8, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15722187

RESUMO

In the Eastern Alps, the Dachstein massif with a height of almost 3000 m is an ideal location for investigating the effects of changes in altitude on the human body. Within a few minutes, a cable car facilitates an ascent from 1702 to 2700 m above sea level, where the partial pressure of oxygen is about 550 mmHg (as compared to 760 mmHg at sea level). In this study, 10 healthy subjects performed a reaction time task at 990 m and 2700 m in altitude. The subjects were instructed to perform a right hand index finger movement as fast as possible after a green light flashed (repeated 50 times). The corresponding electrocardiogram (ECG) and the electroencephalogram (EEG) were recorded. From the ECG heart rate and heart rate variability measures in the time and frequency domain were calculated. An event-related desynchronization/synchronization (ERD/ERS) analysis was performed with the EEG data. Finally, the EEG activity and the ECG parameters were correlated. The study showed that with the fast ascent to 2700 m the heart rate increased and the heart rate variability measures decreased. The correlation analysis indicated a close relationship between the EEG activity and the heart rate and heart rate variability. Furthermore it was shown for the first time that the beta ERS in the 14-18 Hz frequency range (post-movement beta ERS) was significantly reduced at high altitude. Very interesting also is the loss of correlation between EEG activity and cardiovascular measures during finger movement at high altitude. The suppressed post-movement beta ERS at the altitude of 2700 m may be interpreted as results of an increased cortical excitability level when compared with the reference altitude at 990 m above sea level.


Assuntos
Altitude , Eletrocardiografia , Eletroencefalografia , Frequência Cardíaca/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Eletrocardiografia/métodos , Eletrocardiografia/estatística & dados numéricos , Eletroencefalografia/métodos , Eletroencefalografia/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Fatores de Tempo
17.
Int J Food Microbiol ; 92(3): 333-45, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15145592

RESUMO

Determination of the heterotrophic plate count (HPC) is commonly used as a surrogate to assess the general microbial water quality in drinking water. For routine monitoring applications, the HPC is investigated in a quantitative way. However, qualitative data about the HPC bacterial community composition and/or population dynamics are required for particular situations. In order to provide fast and efficient qualitative approaches, molecular biological DNA profiling techniques seem to be suitable tools for the analysis of the total HPC community composition. In this work a DNA profiling technique is presented, which was recently demonstrated by our group to have potential for the rapid qualitative comparison and differentiation of HPC communities from raw and drinking water. The presented approach consists of a polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) for the generation of 16S-rDNA amplicon fingerprints from whole HPC community DNA extracts. In the context of this proceeding, the methodical background is presented and possible scientific merits as well as potential water management applications are discussed. Selected examples of (i) the demonstration of selective growth of HPC populations on different media and the comparison to the total in situ drinking water eubacterial community, (ii) the screening for HPC community variations at different locations of a drinking water distribution system, and (iii) the influence assessment on groundwater HPC communities by an infiltrating treated sewage effluent (bacterial source tracking) are given.


Assuntos
Impressões Digitais de DNA/métodos , Microbiologia da Água , Abastecimento de Água , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/métodos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...