Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cell Mol Life Sci ; 81(1): 162, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568213

RESUMO

Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.


Assuntos
Esclerose Lateral Amiotrófica , Fatores Associados à Proteína de Ligação a TATA , Humanos , Proteínas Quinases Dependentes de AMP Cíclico , Fosforilação , AMP Cíclico , RNA
2.
Fungal Biol ; 127(12): 1512-1523, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097325

RESUMO

The survival of living organisms depends on iron, one of the most abundant metals in the Earth's crust. Nevertheless, this micronutrient is poorly available in our aerobic atmosphere as well as inside the mammalian host. This problem is circumvented by the expression of high affinity iron uptake machineries, including the production of siderophores, in pathogenic fungi. Here we demonstrated that F. pedrosoi, the causative agent of the neglected tropical disease chromoblastomycosis, presents gene clusters for siderophore production. In addition, ten putative siderophore transporters were identified. Those genes are upregulated under iron starvation, a condition that induces the secretion of hydroxamates, as revealed by chrome azurol S assays. RP-HPLC and mass spectrometry analysis allowed the identification of ferricrocin as an intra- and extracellular siderophore. F. pedrosoi can grow in different iron sources, including the bacterial ferrioxamine B and the host proteins ferritin, hemoglobin and holotransferrin. Of note, addition of hemoglobin, lactoferrin and holotransferrin to the growth medium of macrophages infected with F. pedrosoi enhanced significantly fungal survival. The ability to produce siderophores in iron limited conditions added to the versatility to utilize different sources of iron are strategies that certainly may contribute to fungal survival inside the host.


Assuntos
Ferro , Sideróforos , Animais , Ferro/metabolismo , Sideróforos/metabolismo , Hemoglobinas , Mamíferos/metabolismo
3.
Biomolecules ; 13(11)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002281

RESUMO

We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Camundongos , Hipóxia-Isquemia Encefálica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia , Cerebelo/metabolismo , Animais Recém-Nascidos
4.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504717

RESUMO

Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.

5.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174725

RESUMO

The metabotropic glutamate receptor 1 (mGlu1) plays a pivotal role in synaptic transmission and neuronal plasticity. Despite the fact that several interacting proteins involved in the mGlu1 subcellular trafficking and intracellular transduction mechanisms have been identified, the protein network associated with this receptor in specific brain areas remains largely unknown. To identify novel mGlu1-associated protein complexes in the mouse cerebellum, we used an unbiased tissue-specific proteomic approach, namely co-immunoprecipitation followed by liquid chromatography/tandem mass spectrometry analysis. Many well-known protein complexes as well as novel interactors were identified, including G-proteins, Homer, δ2 glutamate receptor, 14-3-3 proteins, and Na/K-ATPases. A novel putative interactor, KCTD12, was further investigated. Reverse co-immunoprecipitation with anti-KCTD12 antibodies revealed mGlu1 in wild-type but not in KCTD12-knock-out homogenates. Freeze-fracture replica immunogold labeling co-localization experiments showed that KCTD12 and mGlu1 are present in the same nanodomain in Purkinje cell spines, although at a distance that suggests that this interaction is mediated through interposed proteins. Consistently, mGlu1 could not be co-immunoprecipitated with KCTD12 from a recombinant mammalian cell line co-expressing the two proteins. The possibility that this interaction was mediated via GABAB receptors was excluded by showing that mGlu1 and KCTD12 still co-immunoprecipitated from GABAB receptor knock-out tissue. In conclusion, this study identifies tissue-specific mGlu1-associated protein clusters including KCTD12 at Purkinje cell synapses.


Assuntos
Proteômica , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Células de Purkinje , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/metabolismo , Glutamatos/metabolismo , Mamíferos/metabolismo
6.
Front Cell Infect Microbiol ; 12: 847846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531339

RESUMO

The transition metals iron and copper are required by virtually all organisms but are toxic in excess. Acquisition of both metals and resistance to copper excess have previously been shown to be important for virulence of the most common airborne human mold pathogen, Aspergillus fumigatus. Here we demonstrate that the ambient availability of amino acids and proteins increases the copper resistance of A. fumigatus wild type and particularly of the ΔcrpA mutant that lacks export-mediated copper detoxification. The highest-protecting activity was found for L-histidine followed by L-asparagine, L-aspartate, L-serine, L-threonine, and L-tyrosine. Other amino acids and proteins also displayed significant but lower protection. The protecting activity of non-proteinogenic D-histidine, L-histidine-mediated growth inhibition in the absence of high-affinity copper uptake, determination of cellular metal contents, and expression analysis of copper-regulated genes suggested that histidine inhibits low-affinity but not high-affinity copper acquisition by extracellular copper complexation. An increase in the cellular copper content was found to be accompanied by an increase in the iron content, and, in agreement, iron starvation increased copper susceptibility, which underlines the importance of cellular metal balancing. Due to the role of iron and copper in nutritional immunity, these findings are likely to play an important role in the host niche.


Assuntos
Aspergillus fumigatus , Ferro , Aminoácidos/metabolismo , Cobre/metabolismo , Regulação Fúngica da Expressão Gênica , Histidina/genética , Histidina/metabolismo , Humanos , Ferro/metabolismo
8.
Neurocrit Care ; 36(1): 171-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34374002

RESUMO

BACKGROUND: The amount of intracranial blood is a strong predictor of poor outcome after subarachnoid hemorrhage (SAH). Here, we aimed to measure iron concentrations in the cerebral white matter, using the cerebral microdialysis (CMD) technique, and to associate iron levels with the local metabolic profile, complications, and functional outcome. METHODS: For the observational cohort study, 36 patients with consecutive poor grade SAH (Hunt & Hess grade of 4 or 5, Glasgow Coma Scale Score ≤ 8) undergoing multimodal neuromonitoring were analyzed for brain metabolic changes, including CMD iron levels quantified by graphite furnace atomic absorption spectrometry. The study time encompassed 14 days after admission. Statistical analysis was performed using generalized estimating equations. RESULTS: Patients were admitted in a poor clinical grade (n = 26, 72%) or deteriorated within 24 h (n = 10, 28%). The median blood volume in the subarachnoid space was high (SAH sum score = 26, interquartile range 20-28). Initial CMD iron was 44 µg/L (25-65 µg/L), which significantly decreased to a level of 25 µg/L (14-30 µg/L) at day 4 and then constantly increased over the remaining neuromonitoring days (p < 0.01). A higher intraventricular hemorrhage sum score (≥ 5) was associated with higher CMD iron levels (Wald-statistic = 4.1, df = 1, p = 0.04) but not with the hemorrhage load in the subarachnoid space (p = 0.8). In patients developing vasospasm, the CMD iron load was higher, compared with patients without vasospasm (Wald-statistic = 4.1, degree of freedom = 1, p = 0.04), which was not true for delayed cerebral infarction (p = 0.4). Higher iron concentrations in the brain extracellular fluid (34 µg/L, 36-56 µg/L vs. 23 µg/L, 15-37 µg/L) were associated with mitochondrial dysfunction (CMD lactate to pyruvate ratio > 30 and CMD-pyruvate > 70 µM/L, p < 0.001). Brain extracellular iron load was not associated with functional outcome after 3 months (p > 0.5). CONCLUSIONS: This study suggests that iron accumulates in the cerebral white matter in patients with poor grade SAH. These findings may support trials aiming to scavenger brain extracellular iron based on the hypothesis that iron-mediated neurotoxicity may contribute to acute and secondary brain injury following SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Encéfalo/metabolismo , Lesões Encefálicas/complicações , Humanos , Ferro/metabolismo , Microdiálise/métodos
9.
J Lipid Res ; 62: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34450173

RESUMO

The molecular assembly of cells depends not only on the balance between anabolism and catabolism but to a large degree on the building blocks available in the environment. For cultured mammalian cells, this is largely determined by the composition of the applied growth medium. Here, we study the impact of lipids in the medium on mitochondrial membrane architecture and function by combining LC-MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum-free and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins strongly depends on the lipid environment in cultured cells and favors the incorporation of essential linoleic acid over other fatty acids. Simultaneously, the mitochondrial respiratory complex I activity was altered, whereas the matrix-localized enzyme citrate synthase was unaffected. This raises the question on a link between membrane composition and respiratory control. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium. This underlines the importance of considering these factors when using and establishing cell culture models in biomedical research. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium.


Assuntos
Cardiolipinas/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Suínos , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
10.
Genome Biol ; 21(1): 299, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292386

RESUMO

BACKGROUND: The presence of nuclear mitochondrial DNA (numtDNA) has been reported within several nuclear genomes. Next to mitochondrial protein-coding genes, numtDNA sequences also encode for mitochondrial tRNA genes. However, the biological roles of numtDNA remain elusive. RESULTS: Employing in silico analysis, we identify 281 mitochondrial tRNA homologs in the human genome, which we term nimtRNAs (nuclear intronic mitochondrial-derived tRNAs), being contained within introns of 76 nuclear host genes. Despite base changes in nimtRNAs when compared to their mtRNA homologs, a canonical tRNA cloverleaf structure is maintained. To address potential functions of intronic nimtRNAs, we insert them into introns of constitutive and alternative splicing reporters and demonstrate that nimtRNAs promote pre-mRNA splicing, dependent on the number and positioning of nimtRNA genes and splice site recognition efficiency. A mutational analysis reveals that the nimtRNA cloverleaf structure is required for the observed splicing increase. Utilizing a CRISPR/Cas9 approach, we show that a partial deletion of a single endogenous nimtRNALys within intron 28 of the PPFIBP1 gene decreases inclusion of the downstream-located exon 29 of the PPFIBP1 mRNA. By employing a pull-down approach followed by mass spectrometry, a 3'-splice site-associated protein network is identified, including KHDRBS1, which we show directly interacts with nimtRNATyr by an electrophoretic mobility shift assay. CONCLUSIONS: We propose that nimtRNAs, along with associated protein factors, can act as a novel class of intronic splicing regulatory elements in the human genome by participating in the regulation of splicing.


Assuntos
Processamento Alternativo , Íntrons , Mitocôndrias/genética , RNA de Transferência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons , Humanos , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética
11.
J Vis Exp ; (164)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33191929

RESUMO

The adsorption of biomolecules from surrounding biological matrices to the surface of nanomaterials (NMs) to form the corona has been of interest for the past decade. Interest in the bio-nano interface arises from the fact that the biomolecular corona confers a biological identity to NMs and thus causes the body to identify them as "self". For example, previous studies have demonstrated that the proteins in the corona are capable of interacting with membrane receptors to influence cellular uptake and established that the corona is responsible for cellular trafficking of NMs and their eventual toxicity. To date, most research has focused upon the protein corona and overlooked the possible impacts of the metabolites included in the corona or synergistic effects between components in the complete biomolecular corona. As such, this work demonstrates methodologies to characterize both the protein and metabolite components of the biomolecular corona using bottom-up proteomics and metabolomics approaches in parallel. This includes an on-particle digest of the protein corona with a surfactant used to increase protein recovery, and a passive characterization of the metabolite corona by analyzing metabolite matrices before and after NM exposures. This work introduces capillary electrophoresis - mass spectrometry (CESI-MS) as a new technique for NM corona characterization. The protocols outlined here demonstrate how CESI-MS can be used for the reliable characterization of both the protein and metabolite corona acquired by NMs. The move to CESI-MS greatly decreases the volume of sample required (compared to traditional liquid chromatography - mass spectrometry (LC-MS) approaches) with multiple injections possible from as little as 5 µL of sample, making it ideal for volume limited samples. Furthermore, the environmental consequences of analysis are reduced with respect to LC-MS due to the low flow rates (<20 nL/min) in CESI-MS, and the use of aqueous electrolytes which eliminates the need for organic solvents.


Assuntos
Eletroforese Capilar/métodos , Metaboloma , Nanoestruturas/química , Coroa de Proteína/química , Espectrometria de Massas em Tandem/métodos , Adsorção , Cromatografia Líquida , Eletrólitos/química , Humanos , Isomerismo , Peptídeos/química , Reprodutibilidade dos Testes
12.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
13.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744498

RESUMO

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.


Assuntos
Aminoácidos/metabolismo , Arrestina/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arrestina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
14.
Clin Chem ; 66(9): 1200-1209, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797158

RESUMO

BACKGROUND: The high molecular complexity of variably O-glycosylated and degraded pro B-type natriuretic peptide (proBNP) derived molecular forms challenges current immunoassays. Antibodies used show pronounced differences in cross-reactivities with these circulating fragments, which still need to be better characterized on a molecular level. To pave the way for advanced quantitative assays in the future, it is critical to fully understand these circulating forms. METHODS: Plasma samples were collected from 8 heart failure (HF) patients and 2 healthy controls. NT-proBNP and proBNP were purified by immunoprecipitation and analyzed by nano-flow liquid chromatography coupled to high-resolution mass spectrometry. Fragments formed during proteolysis in solution digestion were distinguished from naturally occurring peptides by using an 18O stable isotope labeling strategy. RESULTS: We detected 16 previously unknown circulating fragments of proBNP peptides (9 of which are located in the N-terminal and 7 in the C-terminal region), revealing a more advanced state of degradation than previously known. Two of these fragments are indicative of either unidentified processing modes or a far-reaching C-terminal degradation (or a combination thereof) of the precursor proBNP. CONCLUSIONS: Our results further restrict ideal target epitopes for immunoassay antibodies and expand the current thinking of diversity, degradation, and processing of proBNP, as well as the distribution of circulating forms.


Assuntos
Insuficiência Cardíaca/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Feminino , Glicosilação , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/química , Isótopos de Oxigênio/química , Fragmentos de Peptídeos/química
15.
Biol Chem ; 401(9): 1081-1092, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32229688

RESUMO

Lipocalins, small extracellular hydrophobic molecule carriers, can be internalized by a variety of different cells. However, to date receptors have only been identified for human lipocalins. Here, we specifically investigated uptake mechanisms for lipocalins ß-lactoglobulin and Fel d 4 in HeLa and Chinese hamster ovary (CHO) cells. We provide evidence that cell surface heparan sulphate proteoglycan is essential for internalization of these lipocalins. In HeLa cells, lipocalin uptake was inhibited by competition with soluble heparin, enzymatic digestion of cellular heparan sulphate by heparinase and inhibition of its biosynthesis by sodium chlorate. Biochemical studies by heparin affinity chromatography and colocalization studies further supported a role of heparan sulphate proteoglycan in lipocalin uptake. Finally, lipocalin uptake was blocked in CHO mutant cells defective in glycosaminoglycan biosynthesis whereas in wild-type cells it was clearly detectable. Thus, cell surface heparan sulphate proteoglycan represents a novel component absolutely participating in the cellular uptake of some lipocalins.


Assuntos
Alérgenos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Lactoglobulinas/farmacocinética , Lipocalinas/farmacocinética , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Lactoglobulinas/metabolismo , Lipocalinas/metabolismo
16.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265325

RESUMO

Selectable markers are indispensable for genetic engineering, yet their number and variety are limited. Most selection procedures for prototrophic cells rely on the introduction of antibiotic resistance genes. New minimally invasive tools are needed to facilitate sophisticated genetic manipulations. Here, we characterized three endogenous genes in the human fungal pathogen Aspergillus fumigatus for their potential as markers for targeted genomic insertions of DNAs of interest (DOIs). Since these genes are involved in uptake and metabolization of pyrimidines, resistance to the toxic effects of prodrugs 5-fluorocytosine and 5-fluorouracil can be used to select successfully integrated DOIs. We show that DOI integration, resulting in the inactivation of these genes, caused no adverse effects with respect to nutrient requirements, stress resistance, or virulence. Beside the individual use of markers for site-directed integration of reporter cassettes, including the 17-kb penicillin biosynthetic cluster, we demonstrate their sequential use by inserting three genes encoding fluorescent proteins into a single strain for simultaneous multicolor localization microscopy. In addition to A. fumigatus, we validated the applicability of this novel toolbox in Penicillium chrysogenum and Fusarium oxysporum Enabling multiple targeted insertions of DOIs without the necessity for exogenous markers, this technology has the potential to significantly advance genetic engineering.IMPORTANCE This work reports the discovery of a novel genetic toolbox comprising multiple, endogenous selectable markers for targeted genomic insertions of DNAs of interest (DOIs). Marker genes encode proteins involved in 5-fluorocytosine uptake and pyrimidine salvage activities mediating 5-fluorocytosine deamination as well as 5-fluorouracil phosphoribosylation. The requirement for their genomic replacement by DOIs to confer 5-fluorocytosine or 5-fluorouracil resistance for transformation selection enforces site-specific integrations. Due to the fact that the described markers are endogenously encoded, there is no necessity for the exogenous introduction of commonly employed markers such as auxotrophy-complementing genes or antibiotic resistance cassettes. Importantly, inactivation of the described marker genes had no adverse effects on nutrient requirements, growth, or virulence of the human pathogen Aspergillus fumigatus Given the limited number and distinct types of selectable markers available for the genetic manipulation of prototrophic strains such as wild-type strains, we anticipate that the proposed methodology will significantly advance genetic as well as metabolic engineering of fungal species.


Assuntos
Aspergillus fumigatus/genética , Engenharia Genética/métodos , Mutagênese Insercional , Pirimidinas/metabolismo , Animais , Antibacterianos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Feminino , Fusarium/efeitos dos fármacos , Fusarium/genética , Marcadores Genéticos , Humanos , Camundongos , Penicillium chrysogenum/efeitos dos fármacos , Penicillium chrysogenum/genética , Organismos Livres de Patógenos Específicos
17.
Metallomics ; 12(5): 702-720, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32196022

RESUMO

The tiny contribution of cadmium (Cd) to the composition of the earth's crust contrasts with its high biological significance, owing mainly to the competition of Cd with the essential zinc (Zn) for suitable metal binding sites in proteins. In this context it was speculated that in several animal lineages, the protein family of metallothioneins (MTs) has evolved to specifically detoxify Cd. Although the multi-functionality and heterometallic composition of MTs in most animal species does not support such an assumption, there are some exceptions to this role, particularly in animal lineages at the roots of animal evolution. In order to substantiate this hypothesis and to further understand MT evolution, we have studied MTs of different snails that exhibit clear Cd-binding preferences in a lineage-specific manner. By applying a metallomics approach including 74 MT sequences from 47 gastropod species, and by combining phylogenomic methods with molecular, biochemical, and spectroscopic techniques, we show that Cd selectivity of snail MTs has resulted from convergent evolution of metal-binding domains that significantly differ in their primary structure. We also demonstrate how their Cd selectivity and specificity has been optimized by the persistent impact of Cd through 430 million years of MT evolution, modifying them upon lineage-specific adaptation of snails to different habitats. Overall, our results support the role of Cd for MT evolution in snails, and provide an interesting example of a vestigial abiotic factor directly driving gene evolution. Finally, we discuss the potential implications of our findings for studies devoted to the understanding of mechanisms leading to metal specificity in proteins, which is important when designing metal-selective peptides.


Assuntos
Cádmio/farmacologia , Evolução Molecular , Metalotioneína/metabolismo , Metais/análise , Transcriptoma/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Metalotioneína/genética , Filogenia , Homologia de Sequência , Caramujos
18.
Front Microbiol ; 11: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117098

RESUMO

The fungal class 1 lysine deacetylase (KDAC) RpdA is a promising target for prevention and treatment of invasive fungal infection. RpdA is essential for survival of the most common air-borne mold pathogen Aspergillus fumigatus and the model organism Aspergillus nidulans. In A. nidulans, RpdA depletion induced production of previously unknown small bioactive substances. As known from yeasts and mammals, class 1 KDACs act as components of multimeric protein complexes, which previously was indicated also for A. nidulans. Composition of these complexes, however, remained obscure. In this study, we used tandem affinity purification to characterize different RpdA complexes and their composition in A. nidulans. In addition to known class 1 KDAC interactors, we identified a novel RpdA complex, which was termed RcLS2F. It contains ScrC, previously described as suppressor of the transcription factor CrzA, as well as the uncharacterized protein FscA. We show that recruitment of FscA depends on ScrC and we provide clear evidence that ΔcrzA suppression by ScrC depletion is due to a lack of transcriptional repression caused by loss of the novel RcLS2F complex. Moreover, RcLS2F is essential for sexual development and engaged in an autoregulatory feed-back loop.

19.
Cell Rep ; 30(12): 4281-4291.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209484

RESUMO

Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Especificidade de Órgãos , Fosfolipídeos/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Transcrição Gênica
20.
Methods ; 184: 125-134, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014606

RESUMO

The analysis, identification and quantification of histones and their post-translational modifications plays a central role in chromatin research and in studying epigenetic regulations during physiological processes. In the last decade analytical strategies based on mass spectrometry have been greatly improved for providing a global view of single modification abundances or to determine combinatorial patterns of modifications. Presented here is a newly developed strategy for histone protein analysis and a number of applications are illustrated with an emphasis on PTM characterization. Capillary electrophoresis is coupled to mass spectrometry (CE-MS) and has proven to be a very promising concept as it enables to study intact histones (top-down proteomics) as well as the analysis of enzymatically digested proteins (bottom-up proteomics). This technology combines highly efficient low-flow CE separations with ionization in a single device and offers an orthogonal separation principle to conventional LC-MS analysis, thus expanding the existing analytical repertoire in a perfect manner.


Assuntos
Eletroforese Capilar/métodos , Histonas/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Código das Histonas , Histonas/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...