Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7947): 294-302, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653450

RESUMO

Recent success in training artificial agents and robots derives from a combination of direct learning of behavioural policies and indirect learning through value functions1-3. Policy learning and value learning use distinct algorithms that optimize behavioural performance and reward prediction, respectively. In animals, behavioural learning and the role of mesolimbic dopamine signalling have been extensively evaluated with respect to reward prediction4; however, so far there has been little consideration of how direct policy learning might inform our understanding5. Here we used a comprehensive dataset of orofacial and body movements to understand how behavioural policies evolved as naive, head-restrained mice learned a trace conditioning paradigm. Individual differences in initial dopaminergic reward responses correlated with the emergence of learned behavioural policy, but not the emergence of putative value encoding for a predictive cue. Likewise, physiologically calibrated manipulations of mesolimbic dopamine produced several effects inconsistent with value learning but predicted by a neural-network-based model that used dopamine signals to set an adaptive rate, not an error signal, for behavioural policy learning. This work provides strong evidence that phasic dopamine activity can regulate direct learning of behavioural policies, expanding the explanatory power of reinforcement learning models for animal learning6.


Assuntos
Comportamento Animal , Dopamina , Aprendizagem , Vias Neurais , Reforço Psicológico , Animais , Camundongos , Algoritmos , Dopamina/metabolismo , Redes Neurais de Computação , Recompensa , Conjuntos de Dados como Assunto , Sinais (Psicologia) , Condicionamento Psicológico , Movimento , Cabeça
2.
Cell ; 184(10): 2767-2778.e15, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33857423

RESUMO

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.


Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual , Animais , Nível de Alerta , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Estimulação Luminosa , Córtex Visual Primário/citologia , Limiar Sensorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA